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ABSTRACT

Parallel magnetic resonance imaging (MRI) with non-Cartesian sampling pat-

tern is a promising technique that increases the scan speed using multiple receiver coils

with reduced samples. However, reconstruction is challenging due to the increased

complexity.

Three reconstruction methods were evaluated: gridding, blocked uniform re-

sampling (BURS) and non-uniform FFT (NUFFT). Computer simulations of parallel

reconstruction were performed. Root mean square error (RMSE) of the reconstructed

images to the simulated phantom were used as image quality criterion. Gridding

method showed best RMSE performance.

Two type of a priori constraints to reduce noise and artifacts were evaluated:

edge preserving penalty, which suppresses noise and aliasing artifact in image while

preventing over-smoothness, and object support penalty, which reduces background

noise amplification. A trust region based step-ratio method that iteratively calcu-

lates the penalty coefficient was proposed for the penalty functions. Two methods

to alleviate computation burden were evaluated: smaller over sampling ratio, and in-

terpolation coefficient matrix compression. The performance were individually tested

using computer simulations. Edge preserving penalty and object support penalty

were shown to have consistent improvement on RMSE. The performance of calculated

penalty coefficients on the two penalties were close to the best RMSE. Oversampling

ratio as low as 1.125 was shown to have impact of less than one percent on RMSE for
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the radial sampling pattern reconstruction. The value reduced the three dimensional

data requirement to less than 1/5 of what the conventional 2x grid needed. Inter-

polation matrix compression with compression ratio up to 50 percent showed small

impact on RMSE.

The proposed method was validated on 25 MR data set from a GEMR scanner.

Six image quality metrics were used to evaluate the performance. RMSE, normalized

mutual information (NMI) and joint entropy (JE) relative to a reference image from

a separate body coil scan were used to verify the fidelity of reconstruction to the

reference. Region of interest (ROI) signal to noise ratio (SNR), two-data SNR and

background noise were used to validate the quality of the reconstruction. The pro-

posed method showed higher ROI SNR, two-data SNR, and lower background noise

over conventional method with comparable RMSE, NMI and JE to the reference

image at reduced computer resource requirement.
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ABSTRACT

Parallel magnetic resonance imaging (MRI) with non-Cartesian sampling pat-

tern is a promising technique that increases the scan speed using multiple receiver coils

with reduced samples. However, reconstruction is challenging due to the increased

complexity.

Three reconstruction methods were evaluated: gridding, blocked uniform re-

sampling (BURS) and non-uniform FFT (NUFFT). Computer simulations of parallel

reconstruction were performed. Root mean square error (RMSE) of the reconstructed

images to the simulated phantom were used as image quality criterion. Gridding

method showed best RMSE performance.

Two type of a priori constraints to reduce noise and artifacts were evaluated:

edge preserving penalty, which suppresses noise and aliasing artifact in image while

preventing over-smoothness, and object support penalty, which reduces background

noise amplification. A trust region based step-ratio method that iteratively calcu-

lates the penalty coefficient was proposed for the penalty functions. Two methods

to alleviate computation burden were evaluated: smaller over sampling ratio, and in-

terpolation coefficient matrix compression. The performance were individually tested

using computer simulations. Edge preserving penalty and object support penalty

were shown to have consistent improvement on RMSE. The performance of calculated

penalty coefficients on the two penalties were close to the best RMSE. Oversampling

ratio as low as 1.125 was shown to have impact of less than one percent on RMSE for
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the radial sampling pattern reconstruction. The value reduced the three dimensional

data requirement to less than 1/5 of what the conventional 2x grid needed. Inter-

polation matrix compression with compression ratio up to 50 percent showed small

impact on RMSE.

The proposed method was validated on 25 MR data set from a GEMR scanner.

Six image quality metrics were used to evaluate the performance. RMSE, normalized

mutual information (NMI) and joint entropy (JE) relative to a reference image from

a separate body coil scan were used to verify the fidelity of reconstruction to the

reference. Region of interest (ROI) signal to noise ratio (SNR), two-data SNR and

background noise were used to validate the quality of the reconstruction. The pro-

posed method showed higher ROI SNR, two-data SNR, and lower background noise

over conventional method with comparable RMSE, NMI and JE to the reference

image at reduced computer resource requirement.
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CHAPTER 1

INTRODUCTION

Magnetic resonance imaging (MRI) is a kind of tomographic imaging tech-

nique that creates images of the internal characteristics of the object from externally

measured signals based on nuclear magnetic resonance (NMR). MRI has developed

into one of the most popular medical imaging techniques. It has been widely used in

imaging of cardiac, brain, spinal cord, and so on.

1.1 Nuclear Magnetic Resonance

NMR phenomenon was first independently observed by Felix Bloch and Ed-

ward Purcell in 1946. NMR is based on the fact that a nucleus that has odd atomic

weights and/or odd atomic numbers possess an angular momentum, called a spin. A

hydrogen atom is one example of this kind of nucleus which has only one proton. The

spin creates a magnetic field around the nucleus. Since the direction of the spins are

random, the bulk magnetism is zero [1].

If the nuclei are exposed to a strong external magnetic field B0, with its di-

rection denoted as ~z, they will begin to align with B0, either parallel or antiparallel,

and precess around the direction of B0. The angular frequency ω0, known as Larmor

frequency, of the precession is

ω0 = γB0 (1.1)
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where γ is called gyromagnetic ratio, which is a physical constant for certain nuclei.

For example, γ = 2.675 × 108rad/s/T for 1H, γ = 7.075 × 107rad/s/T for 31P. B0

is typically between 0.2 and 3T in most clinical MRI systems. The number of spins

in the two alignments with B0 are not equal, with a small number more of spins

in the parallel alignment mode which corresponds to a low energy state. Thus a

bulk macroscopic magnetization ~M is generated, whose direction is exactly along the

direction of B0 at equilibrium. The bulk transverse component is still zero because

of the randomness of the spin in this plane [1].

If another oscillating magnetic field B1(t) with the oscillating frequency the

same as Larmor frequency is applied on the transverse plane, some spins in the

low energy state will absorb energy and transit to the high energy state. The bulk

magnetism will be flipped away from the B0 direction, creating a non-zero transverse

plane component. The angle α between the new direction and B0 is called the flip

angle, which depends on the shape and duration of B1(t). B1(t) also has a frequency

selectivity property that affects the kind of nuclei spins to be excited. After the RF

pulse B1(t) is over, the nuclear spin system is in the free induction decay (FID) mode.

These spins will return to the low energy state follow an exponential function. The

behavior of ~M under this circumstance is described by the Bloch equation [1]:

d ~M

dt
= γ ~M × ~B − Mx

~i+My
~j

T2
− (Mz −M0

z )
~k

T1
(1.2)

where M0
z is the equilibrium value of M when only B0 is present.
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There are two time constants related to the relaxation: T1, which relates to the

recovery of magnetism along the longitudinal direction of B0, and T2, which relates

to the diminishing of transverse plane magnetism. This is called relaxation. The

bulk magnetism will vary in this period. This means the signal is generated by free

precession of the bulk magnetization, it can be detected by a receiver coil based on

Faraday’s law of electromagnetic induction and the signal strength is decreasing over

time [1]. This is the raw signal that the MRI system produce. B1(t) field is also

called RF pulse because it lasts in a short time and oscillates int the radio-frequency

range [1].

1.2 Magnetic Resonance Imaging

Paul Lauterbur proposed an spatial information encoding principle so that an

image can be generated using the NMR signal in 1972 [2]. A typical MRI system

contains three hardware components: a main magnet B0, a magnet field gradient

system G and a RF system B1(t).

1.2.1 Magnetic Gradient Systems

B0 and B1(t) have been discussed in the previous section. The gradient system

typically consists of three orthogonal gradient coils to produce time varying magnetic

field along ~x, ~y and ~z directions. The direction of the gradients are all along ~z, only

the magnitude varies along different directions. For example, ~Gx = Gx(x)~z. The

shapes and forms of these gradients can be adjusted independently to satisfy different

requirements. They are essential for signal localization.
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With a gradient ~G, equation 1.1 becomes

ω0 = γ(B0 + ~G · ~r) (1.3)

where ~r denotes an spatial location. Now the Larmor frequency at different spatial

locations are different.

1.2.2 Signal Encoding

The gradient systems have two main functions: slice selection and spatial

encoding. Slice selection is the result of both the gradients, which make the Larmor

frequency depend on spatial location, and RF pulse, which has a frequency selection

function.

The spatial information encoding can be done in two ways: frequency encod-

ing, which makes the oscillation frequency of the MR signal linearly dependent on

spatial location, and phase encoding, which makes the initial phase of the MR sig-

nal linearly dependent on location. For example, if ~Gfe = [GxGyGz] is applied, the

Larmor frequency with respect to position ~r = [rxryrz] is

ω(~r) = ω0 + γ ~Gfe · ~r (1.4)

where [·] denotes inner produce. The received signal is
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S(t) =
[
∫

object
ρ(~r)e−iγ ~Gfe·~rtd~r

]

e−iω0t (1.5)

where ρ(~r) is the spin density at position ~r [1]. After signal demodulation (this is

done in signal detection), the signal becomes

S(t) =
∫

object
ρ(~r)e−iγ ~Gfe·~rtd~r (1.6)

For phase encoding, ~Gpe is turned on for a short interval Tpe and then turned off. The

signal is

S(t) =
∫

object
ρ(~r)e−iγ ~Gpe·~rTped~r (1.7)

The signal expression can be simplified using the popular k-space notation. k-space

is the spatial-frequency domain. The parameters are defined as follows [1]:

kx = γGxt (1.8)

ky = γGyt (1.9)

kz = γGzt (1.10)

or in the general expression:
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k = γ
∫ t

0
G(τ)dτ (1.11)

where k represents the location in k-space. Figure 1.1 illustrates some examples of

the relationship of G and k.

gx
gy

(a) Gx and Gy.

kx
ky

(b) kx and ky.

Figure 1.1: Gradient and k-space locations.

In this way, the frequency encoded signal is

S(~k) =
∫

object
ρ(~r)e−i~k·~rd~r (1.12)

Equation 1.12 is exactly the same form as the Fourier transformation of ρ(~r) [1]. This

means the spatial domain and the k-space are a Fourier transformations pair. This

property is very useful in image reconstruction from k-space samples. An example of



www.manaraa.com

7

two dimensional image and its k-space samples are illustrated in figure 1.2.

(a) 2D image. (b) 2D k-space samples.

Figure 1.2: Two dimensional image and k-space samples.

1.2.3 Signal Detection

Signal detection starts after the RF pulse B1(t) is over. If the magnetic field

is homogeneous, the FID signal can provide enough information to form the detected

signal. However, the homogeneousness is not always true. The FID signal decays

much faster in the inhomogeneous magnetic field. To overcome this fast decay prob-

lem, a new MR signal called echo is used. There are two ways to generate this

echo signal. One is to used multiple RF pulses. The signal is called RF echoes or

spin echoes. The other is to used magnetic gradients. The signal is called gradient

echoes [1].
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1.2.4 Fast Imaging Techniques

With the development of MRI systems, the scan speed is increased by varies

fast imaging techniques. These methods include fast spin echo (FSE) [3–5], fast

gradient echo such as fast low angle shot (FLASH) [6].

Echo-planar imaging (EPI) is the first ultra high speed imaging method [7].

This method can collect a complete set of two dimensional k-space data by one RF

pulse. Later this term is broadened to refer to single-shot imaging. Multi-shot EPI is

also included in this term. The k-space data lie in a zig-zag trajectory, as illustrated

in Figure 1.3(a).

Some other trajectories are also used in EPI, such as rectilinear trajectory [8],

spiral [9, 10], etc. shown in Figure 1.3(b) and 1.3(c), respectively. Spiral trajectory

has been widely used due to its intrinsic advantages. Its sampling trajectory always

starts at the k-space origin. This means the strongest signal is obtained. It also has a

moment-nulling motion compensation property, reducing artifacts caused by patient

motion. Besides, it can efficiently use the power of the gradient system [10, 11]. A

drawback of spiral trajectory imaging, and also the non-Cartesian grid imaging, is

the need of an extra regridding step. Details will be discussed in later chapters.

Partial k-space sampling is another kind of method. The speed is enhanced

by reducing the number of scanned samples. The missing samples are restored later

by estimation. Two main problems are related with these methods: loss of resolution

and introduction of extra artifacts [1].

Parallel imaging, or multi-coil imaging, is a promising fast imaging method
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(a) Zigzag (b) Rectilinear (c) Spiral

Figure 1.3: k-space trajectories.

which was proposed recently [12, 13]. It utilizes a number of receiver coils to sample

k-space. The sampling trajectory can be any of those used in previous fast imaging

ones. But there is additional information resides in the non-uniform coil sensitivity.

Each coil obtains a reduced number of frequency encoded samples. The image can

then be obtained using both frequency encoding and the coil sensitivity information.

1.2.5 Image Reconstruction

The measured signal from MRI scanner need to be postprocessed, or recon-

structed, to convert to an image.

If the k-space samples are equally spaced, the reconstruction is simply an

inverse Fourier operation. This can be efficiently computed via Fast Fourier Trans-

formation (FFT). A parameter called the field of view, or FOV, which represents the

largest object that can be reconstructed without aliasing, is defined by the distance

∆k between the lines in k-space:

FOV =
1

∆k
(1.13)
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In fast imaging situations, a more complicated reconstruction technique need

to be implemented. For non-Cartesian samples, an interpolation step need to be

performed before FFT to convert the samples onto a regular Cartesian grid. Sev-

eral methods have been proposed, such as gridding [10, 14, 15], nonuniform FFT

(NUFFT) [16–19], blocked uniform resampling (BURS) [20], etc. These methods

will be discussed in detail in later chapters.

In parallel imaging, the reconstruction is even more complicated and involves

an extra step of combining the coil sensitivity information with the usual spatial

encoding information. Two popular parallel imaging methods are SiMultaneous Ac-

quisition of Spatial Harmonics (SMASH), which utilizes coil sensitivity information

in k-space, and SENSitivity Encoding (SENSE) which derives a sensitivity map in

the image domain [12, 13].

The specific aims of this work are:

1. Evaluate MRI image reconstruction methods from non-Cartesian k-space sam-

ples. Compare the similarities and differences of the methods.

2. Apply the reconstruction methods in parallel imaging strategies in MRI. Com-

pare their performances.

3. Develop an efficient three-dimensional parallel MRI image reconstruction algo-

rithm from non-Cartesian samples.

4. Evaluate the performance of the new method using 3D simulations and in vivo

MR data.
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The rest of the chapters are arranged as follows. In chapter 2 several recon-

struction method from non-Cartesian samples are reviewed. The application of non-

Cartesian method with parallel MRI reconstruction are evaluated in chapter 3. Meth-

ods for image qualify improvement and computation burden alleviation are proposed

and evaluated using computer simulations in chapter 4. In chapter 5 the proposed

method are evaluated using three-dimensional non-Cartesian data from MR scanner.

Several image quality metrics are calculated and compared with conventional method.

Chapter 6 summarizes this thesis.
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CHAPTER 2

MRI IMAGE RECONSTRUCTION

For non-Cartesian k-space samples, FFT cannot be directly applied to recon-

struct the image. Discrete Fourier transformation is a possible method with a much

heavier computation burden. Currently the widely used method is to first regrid the

samples onto regular Cartesian grid and then apply inverse FFT. These methods in-

clude gridding [10, 14, 15], blocked uniform resampling (BURS) [20, 21], non-uniform

FFT (NUFFT) [16–19], etc.

2.1 Gridding Reconstruction Algorithm

The most general and currently widely used method of reconstruction in MRI

is the gridding reconstruction algorithm [10, 14, 15]. Gridding is an interpolation

operation from non-Cartesian samples onto grid points. As illustrated in figure 2.1,

all the non-Cartesian points in a certain distance (window width) ∆ interpolate on

the Cartesian grid point in the center. It generally contains four steps.

• The first step is to perform density compensation to compensate for the non-

uniformity of the k-space sample points.

• The samples are convolved with an interpolation kernel and resampled onto

Cartesian grid.

• Image is obtained by an inverse FFT.
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∆

∆

Figure 2.1: Gridding interpolation. The “+” denotes a Cartesian grid point which

value is unknown. The “·” represent the surrounding non-Cartesian samples which

contribute to the interpolation on “+”. ∆ is the width of the convolution kernel.

• Divide the image by the inverse Fourier transformation of the interpolation

kernel to compensate for the roll-off effect of its main lobe.

This process is illustrated in Fig. 2.2 [15].

÷× *Signal × ÷

S(u,v) DCF C(u,v)

IFFT Image

III(u,v) c(x,y)

Sampling Density
compensation

Convolution Resampling Post-compensation

Figure 2.2: Gridding method

The expression of image x is shown in equation 2.1

x = F−1((
S

D
∗ C) · III) · 1

c
(2.1)
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where S is k-space samples, D is density compensation, C is the convolution kernel in

k-space, “*” denotes convolution operation, III represents Cartesian grid resampling,

c is post-compensation, F−1 represents inverse FFT.

In the first step, the nonuniform sampling density is usually corrected by a

density compensation function, or DCF. The DCF can be defined and computed in

a variety of ways. This step is important in reducing the reconstruction error in

the image. Jackson et al. introduced a numerical method called the area density

function, or ADF, as density compensation [15]. An iterative method which extends

the ADF was provided by Pipe et al. [22]. Meyer et al. introduced an analytic

function as the DCF for spiral sampling trajectory [10]. Hoge et al. described another

analytic DCF for spiral trajectory which is based on the Jacobian determinant for

the transformation between the Cartesian grid and the spiral trajectory parameters

of time and interleaf rotation angle [23]. Rasche et al. proposed a Voronoi-diagram

method to compute DCF [24]. The DCF is the inverse of the area of the Voronoi

cell around each sample. An example of Voronoi-diagram for 2D spiral trajectory is

shown in figure 2.3. The Voronoi-diagram approach is a powerful method to compute

the local density. It can be used on both 2D and 3d problems. The result depends

only on the sampling pattern, not on the acquiring order. The drawback is that its

computation complexity is relatively high. And since the computation of the Voronoi

cell requires the existence of neighboring points, there may be problems when dealing

with the points at the outmost of the sampling area. These points need to be treated

with additional assumptions and computations besides the Voronoi-diagram.
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Figure 2.3: Example of Voronoi-diagram

O’Sullivan analyzed the gridding operation and showed that the optimal grid-

ding method is to first convolve with an infinite sinc function and then perform

resampling [14]. For practice reasons, this infinite function need to be replaced by a

finite convolving function. This finite convolution kernel will contribute two artifact

into the reconstructed image. Firstly, the inverse of the Fourier transform of this

kernel has side lobes, which will be aliased back to the image causing artifact. Also,

the central lobe is typically not flat. It shows a rolloff effect. Thus the intensity of the

image is changed. This can be corrected by a post-compensation step, which requires

dividing the image by this central lobe. Jackson et al. compared the performance of

several kinds of kernels including two-term cosine (Hamming window, Hanning win-

dows), three-term cosine (Blackman window), Gaussian window and Kaiser-Bessel

kernel, and concluded that in the sense of minimum aliasing energy in the recon-

structed image, Kaiser-Bessel kernel with optimal parameter is the best choice [15].

To reduce the artifact in the reconstructed image, an over-sampling ratio is

applied to the reconstruction. Gridding is usually applied on a larger (denser) grid
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in k-space, and then keep only the center region of the image after inverse FFT [15,

20, 25]. Typically a double sized (2x) grid, which corresponds to over-sampling ratio

of 2, is used. Using larger grid generates a better image with the cost of computation

time. A recent research showed that smaller values of 1.125x or 1.375x grid are also

possible with comparable image errors [26].

Gridding is widely used due to its simpleness and easiness to implement. The

kernel width is typically small, 2-4 according to Jackson et al. [15], making it still a

fast algorithm to implement. However, one drawback of the gridding method is the

definition and computation of the density compensation. This is typically a time-

consuming part.

2.2 Blocked Uniform Resampling

Rosenfeld introduced the Uniform ReSampling (URS) algorithm to solve the

regridding problem [20]. URS constructs a set of linear equations based on interpola-

tions from Cartesian grid to non-Cartesian k-space samples. Then the equations are

solved using singular value decomposition (SVD). A more computationally feasible

version called Blocked URS (BURS) was also provided [20]. Similar algorithms was

also proposed by Kadah [27].

According to sampling theory [28], an interpolation from regular Cartesian

grid points k to any point κ can be expressed as

f(κ) =
∞
∑

n=−∞

f(kn)K(κ− kn) (2.2)

where K(·) is the interpolation kernel, which is the sinc function for the ideal case.
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The relationship between the values on the Cartesian grid y and those on the sampling

trajectory b can be expressed in a matrix form as

Ay = b (2.3)

where

y = (y1, y2, · · · , yN)T , b = (b1, b2, · · · , bM)T (2.4)

y and b are vectors with length N and M respectively. “T” denotes transpose opera-

tion. A is the interpolation coefficient matrix with dimension ofM-by-N . Its element

aji on the j-th row and i-th column is defined according to equation 2.2

aji = K(κj − ki) (2.5)

Equation 2.3 is then solved using pseudoinverse of A in the minimum norm least

square sense given by

y = (AHA)−1AHb

= A†b (2.6)

where A† = (AHA)−1AH is the Moore-Penrose pseudoinverse. AH denotes the com-

plex conjugate transpose of A. The pseudoinverse can be computed efficiently using

the singular value decomposition (SVD) [29].

For an M ×N matrix A with rank r, there exists orthogonal M ×M matrix

U and N ×N matrix V and a diagonal matrix Σ satisfy the following equation

A = UΣV T (2.7)
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where Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, r ≤ n. The numbers σi

are the singular values of A. The columns of matrix U and V are the left and right

singular vectors of A, respectively. The pseudoinverse of A can then be expressed as

A† = V Σ†UT (2.8)

where Σ† is a zero matrix except the first r main diagonal elements are σ−1
1 , σ−1

2 , · · · , σ−1
r .

The solution y minimizes the cost function

ψ(y) = ||Ay − b|| (2.9)

and whose norm is the minimum of all that minimize equation 2.9.

A typical size of a two dimension image is 256× 256. The number of k-space

samples is of the same magnitude. So the dimension of matrix A will be 216×216, i.e.

the total number of elements in A is around 4×109. This makes the SVD computation

practically infeasible.

For interpolation problems, a sample that is far away from the point to be

interpolated has little impact on the interpolation result. This can also be seen from

the definition that sinc(x) = sin(x)/x, which means the interpolation effect decreases

with the distance following an envelope function of ±1/x. The griding algorithm

uses this property to limit the width of interpolation kernel [15]. Thus only limited

values around the point are used. Similarly, the number of non-zero interpolation

kernel coefficients in URS method can be limited. For each k-space sample point, the

interpolation is limited to those Cartesian grid within a certain radius of distance.

For a Cartesian grid point ki, only those Cartesian points with a radius of ∆k and
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k-space sample points with a radius of δκ are considered. Suppose the number of

these points are Ni and Mi respectively. It is sufficient to use these Ni Cartesian

points vector y and Mi sample points vector b to estimate the value at ki using the

following equation

Ay = b (2.10)

where A is an Mi × Ni interpolation coefficient matrix. It is a submatrix of the

full interpolation coefficient matrix A as in equation 2.3. But now the dimension

of the problem to be solved is only Mi × Ni, which is much smaller than M × N .

So the pseudoinverse computation is feasible. This is called the Blocked Uniform

ReSampling algorithm, or BURS. In summary, the BURS algorithm for 2D image

reconstruction is [20]

1. Choose the radii ∆k and δκ (with δκ ≤ ∆k).

2. Initialize a zero N ×M matrix A†.

3. For every Cartesian grid point ki(i = 1, 2, ..., N) perform the following opera-

tion:

(a) Select Mi non-uniform samples b within distance δκ of ki.

(b) Select Ni Cartesian grid points x within distance ∆k of the ki.

(c) Calculate the Mi ×Ni interpolation matrix A.

(d) Compute A
†
using SVD.
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(e) Isolate the row in A
†
corresponding to the position of ki and save them in

the appropriate positions in A†.

4. The values on the Cartesian grid points are obtained by y = A†b.

5. Perform inverse Fourier transformation of y, which can be efficiently calculated

with FFT, to generate the reconstructed image.

6. Perform post-compensation.

The ∆k and δκ are two free parameters that will affect the reconstructed

image and also the computation complexity. Larger ∆k and δκ can reconstruct a

better image, but the computation time will also be increased [20].

A possible improvement on the computation burden in BURS is to divide the

Cartesian grids into many small blocks with block size B ≥ 1. Then in the above

algorithm, the computation for every Cartesian grid points is replaced by computation

for every block [30].

In general, BURS can produce similar or better images compared with the

gridding algorithm [21]. Several applications of BURS showed that it is an accu-

rate algorithm, but the reconstruction is also sensitive to noise and measuring er-

rors [21, 25, 31]. As a result, the reconstructed image may be contaminated even the

noise level is not high [21, 25]. The reason of noise amplification lies in the pseu-

doinverse of the interpolation matrix. It is an inverse problem whose result is often

unstable. In equation 2.8, the reverse of the singular values σ−1
i are involved in the

pseudoinverse. A small σi corresponds to a very large σ−1
i . This means an arbitrarily
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small perturbation of the input data can cause an arbitrarily large perturbation in

the image.

The solution of this problem is to add some kind of regularization, i.e. in-

corporate further information of the desired solution to stabilize the problem and

single out the desired stable one. Several types of regularization techniques can be

applied. The main part of which is to replace σ−1
i with a filter function F (σi) such

that F (σi) ≈ σ−1
i for larger σi and F (σi) ≈ 0 for small σi.

The most famous method is the Tikhonov regularization [32, 33], where

F (σi) =
σi

σ2
i + µ

(2.11)

µ is the regularization parameter to be determined based on the specific problem.

Another popular method is the truncated SVD (TSVD) [29, 34], where

F (σi) =



















σ−1
i 1 ≤ i ≤ µ

0 other

(2.12)

µ is the position to truncate the singular values.

These regularization techniques successfully improved the BURS reconstruc-

tion with noisy data [21, 25]. At the same time, the computation complexity does

not change too much. But how to obtain the optimal regularization parameter still

remains to be an open problem. In practice empirical values are typically used [21,25].
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2.3 Non-Uniform FFT

Reconstruction Algorithm

Non-uniform FFT, or NUFFT, is a method to approximating the Fourier trans-

formation from image to non-uniform (non-Cartesian) k-space samples by interpolat-

ing an oversampled FFT [16–19].

Suppose xn, n = 1, 2, . . . , N − 1 is an equally spaced 1D signal sequence. The

Fourier transformation of xn, X(ω) is given by

X(ω) =
N−1
∑

n=0

xne
−iωn (2.13)

This computation can be efficiently obtained by FFT if X(ω) is also equally spaced.

For a collection of M non-uniformly spaced frequency locations {ωm}, the Fourier

transformation is defined as

Xm =
N−1
∑

n=0

xne
−iωmn (2.14)

Directly evaluating equation 2.14 requires O(MN) operations. This would be con-

siderably slow when M and N are large (as in most imaging applications). Fast

computation of equation 2.14 generally contains two steps [19]. The first step is to

choose a number K ≥ N and compute a weighted K-point FFT over {xn}:

Yk =
N−1
∑

n=0

snxne
−i 2π

K
kn (2.15)

where {sn} is a scaling vector, which is an algorithm design parameter to pre-

compensate for imperfections in the following frequency domain interpolation [18].

This is similar to the post-compensation operation in the gridding method. The

second step is to approximate {Xm} by interpolation using some neighbor points in
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{Yk}.

X̂(ωm) =
K−1
∑

k=0

Ykv
H
mk (2.16)

where vmk denotes the interpolation coefficients.

The are many ways to choose the interpolation function, which controls the

scaling parameter sn and interpolation coefficients vmk. Dutt et al. [16] introduced a

Gaussian based interpolation. Starty et al. [35] proposed a generalized FFT (GFFT)

and demonstrated that a Gaussian kernel can provide a more accurate reconstruction

compared to the Kaiser-Bessel based griding method. Beylkin [36] used the B-spline

based interpolation. Anderson et al. [37] took the Taylor series expansion method.

Fessler et al. [19] introduced a min-max interpolation, which is a fixed-width inter-

polator that minimizes the worst case approximation error of all signals with unit

norm. Sha et al. [38] used a similar criterion by using a kernel matrix that fit for the

k-space trajectory in the sense of least square approximation error. The performance

of the NUFFT method with min-max interpolation was shown to be more accurate

than other interpolation methods [19].

The image x and k-space samples b can be related using a general form as

b = Ex+ n = AFx+ n (2.17)

where E = AF is an encoding matrix that maps x onto b, F denotes FFT, A is an

interpolation matrix similar to that in BURS method, and n is white Gaussian noise.

In MRI with non-Cartesian samples, E is the NUFFT operation of x. Conjugate

gradient method (CGM) is a popular iterative method to solve equation 2.17 in the
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least square sense [39, 40]. Its objective function is

ψ(x) = ||Ex− b||2 (2.18)

Among all the possible solutions, CGM chooses the one with minimal norm [39].

There are several user defined parameters in CGM. Firstly, an initial estima-

tion of x need to be provided as a starting value in CGM. All possible estimations,

such as prior information or a rough reconstruction, can be used. It can also be set

to zero in the simplest situation. A good starting value can speed up the convergence

of CGM. Another parameter is the total number of iterations. In theory, if the di-

mension of E is N × N , then the maximum iteration for the solution to converge is

N [39]. However, in practice x can converge to a fairly good result in a small number

of iterations, with only minor improvements from then on. So there is a trade-off

between the solution quality and the computation time. Typically the number of

iterations can be set to a number much smaller than N .

In conventional gridding reconstruction method, the operation is on k-space

samples and evenly-spaced k-space grid points. While in iterative NUFFT reconstruc-

tion, the manipulation is done directly between the image and the k-space samples.

Thus it is easy to incorporate regularizations based on image processing techniques

such as smoothing, edge-preserving, etc. [40]

The iterative reconstruction method using NUFFT yields a better image com-

pared to gridding [19]. The image artifacts are greatly reduced. The incorporation

of edge-preserving regularization further enhances the image quality. On the other

hand, however, the iterative reconstruction method requires longer computation time
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compared with gridding.

2.4 Relationships of Gridding,

BURS and NUFFT

BURS, which is a least square algorithm, and gridding method are derived in

two different approaches. But they are the closely related [20, 31].

The gridding operation is a method to interpolate the grid data based on the

non-equally spaced samples. The k-space operation includes a density compensation,

convolution and resampling. This can be expressed as

f̂(kj) =
M
∑

i=1

K(kj − κi)f(κi)d(κi) (2.19)

where f(κi) denotes the value at the i-th sample point κi, d(κi) represents the density

compensation at κi, K(·) denotes the convolution kernel, M is the total number of

samples and f̂(kj) is the estimated value at the j-th Cartesian grid point kj. Let

x = [f̂(kj)] denote the N × 1 vector of grid points and b = [f(κi)] denote the M × 1

sample vector, equation 2.19 can be rewrite as

y = AHDb (2.20)

where A is the N ×M coefficient matrix with its element Aij = K(kj − κi). Since

all Aijs are real-valued, AH = AT . D is an M ×M diagonal matrix with its main

diagonal value Dii = d(κi). To make a similar form, equation 2.6 in BURS can be

rewrite as [31]

y = AHA(AHA)−2AHb

= AH
[

A(AHA)−2AH
]

b (2.21)
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Obviously equation 2.20 and 2.21 have a very similar form. The matrices manipulation

A(AHA)−2AH in BURS in equation 2.21 is approximated by the density function D

in gridding in equation 2.20 [31]. One can consider that gridding is a special form of

the least square method. Since there is no matrix inversion in gridding, it is more

stable compared with BURS.

Gridding and BURS operations are in k-space only. The entire reconstruction

process contains an “interpolation” step followed by inverse FFT. NUFFT recon-

struction directly relates the image and the k-space samples, making the Fourier

transformation an embedded step. The reconstruction procedure is a loop of FFT,

interpolation and image updating.

The total number of multiplications in gridding is JM , where M is the total

number of k-space samples and J = Jx × Jy × Jz is the product of the interpolation

kernel size along all directions. The density compensation requires extra computa-

tions. In BURS, if ∆ki = δκi = Ji for i = x, y, z and assuming N̄i = M̄i for every grid

point i, then the total number of multiplications is around JM after SVD is done.

In NUFFT, the total number of operations is O(nK logK) +O(nJM) [19], where K

is the larger grid size, n is the number of iterations. Typically K ≈ 2N ,J ≤ 10 and

M ≈ N [19].

In all the methods there are some coefficients or intermediate results that can

be pre-computed. In gridding, the DCF is typically pre-computed, the memory re-

quirement is onlyM . The interpolation coefficients, i.e. the A matrix in equation 2.20

can also be precomputed. But this is not always required because the computation



www.manaraa.com

27

burden is not high. In BURS, the SVD requires O(N̄3) operations, where N̄ = J

is the dimension of each of the small matrix Ā. The SVD result A† can be pre-

computed, which requires total memory of around JM . In NUFFT since iterative

method is used, the image needs to be computed several times for the same k-space

locations. It is convenient to pre-compute and store all the interpolation coefficients

to save computation time. The total number of these coefficients is also JM . The

comparison of gridding, BURS and NUFFT are summarized in table 2.1.

gridding BURS NUFFT

number of operations JM JM O(nK logK) +O(nJM)

memory requirement M or M + JM JM JM

Table 2.1: Comparison of gridding, URS and NUFFT.
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CHAPTER 3

PARALLEL IMAGING RECONSTRUCTION

3.1 Parallel Imaging

Parallel imaging uses an array of receiver coils (for example, a four channel

phased array coil) to increase the sampling speed [12, 13]. Each of the coils in the

array has a different spatial sensitivity profile. These sensitivities contain spatial

encoding information, which is different from the information in k-space locations.

The sensitivities are not the property of the object under examination, but of the array

coils. This additional information can be used for image generation, thus reducing

the k-space location encoding is possible. This will in turn reduce the total scan time.

Currently there are two popular reconstruction methods for parallel imaging

that utilize the coil sensitivity information in k-space and image domain respectively.

One is SMASH, which is the short for SiMultaneous Acquisition of Spatial Harmon-

ics [12]. It is the first successful in vivo parallel MRI implementation. The other

is SENSE, which means SENSitivity Encoding [13]. Many optimizations, extensions

and applications of these methods were reported later on.

3.2 SMASH and SENSE

3.2.1 SMASH

3.2.1.1 Theory of SMASH

SMASH is first applied on Cartesian sampling trajectories. It uses linear

combinations of simultaneously acquired signals from different coils with different
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sensitivity profiles to generate other data points at different k-space locations. This

means some data lines can be omitted at the time of scanning and can be recovered

later using the coil sensitivity information.

Using 2D imaging as an example, the MR signal at k-space position (kx, ky)

can be expressed as

S(kx, ky) =
∫∫

C(x, y)ρ(x, y)e−ikxx−ikyydxdy (3.1)

where ρ(x, y) is spin density, C(x, y) is receiver coil sensitivity.

SMASH uses a linear array of surface coils to synthesize multiple sinusoidal

sensitivities [12]. For an array of Nc coils, the composite sensitivity needs to be the

following form:

Ccomp(x, y) =
Nc
∑

j

njCj(x, y) = eim∆kyy (3.2)

where nj is the weight for coil j, m is an integer and ∆ky = 2π/FOV . The composite

sensitivities are arranged to be spatial harmonics of the image field of view [12]. The

effect of the composite sensitivity is to shift the k-space data by −m∆ky.

S(kx, ky) =
∫∫

Ccomp(x, y)ρ(x, y)e−ikxx−ikyydxdy

=
∫∫

ρ(x, y)e−ikxx−i(ky−m∆ky)ydxdy

= S(kx, ky −m∆ky) (3.3)

The imaging speed of SMASH is faster than conventional sequential imaging

sequences. If M spatial harmonics can be generated using linear combination, the

full k-space signal can then be generated with only a fraction of 1/M of the phase

encoding steps. Thus the scanning time is reduced by a factor of 1/M . A factor of
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two times savings was implemented in ref.[12] using three and four element array coils

for phantom and in vivo images.

Reconstruction of SMASH imaging includes two parts, the computation of

coil sensitivities and weighted sums. If the coil sensitivity information is known

in advance, then the SMASH reconstruction only consists of several weighted sums

followed by inverse FFT. Thus additional reconstruction burden is small. In fact

the weighted sum could even possibly be done at the same time of scanning. A

correct SMASH image depends on correct measurement coil sensitivities. Errors

in sensitivities lead to errors in spatial harmonics. This in turn leads to aliasing

artifacts [12]. The aliasing may be avoided by using larger coil arrays. The results

in ref.[12] showed that SMASH reconstruction does not sacrifice signal to noise ratio

compared with the reference image generated using a sum-of-squares combination of

coils.

SMASH has some restrictions in choosing the image planes due to the place-

ment and the direction of the receiver coils. In its original form, a very structured

array of coils is required [12]. The requirement of measuring the component coil

sensitivities may be another time and computation burden.

There are many improved and extended methods based on SMASH. Such as

AUTO-SMASH [41] and variable-density (VD)-AUTO-SMASH [42] which use addi-

tional autocalibration signals (ACS) to determine the weights in SMASH automati-

cally. The advantage is that no extra coil sensitivities need to be acquired.
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3.2.1.2 GRAPPA

Griswold et al. proposed a further extension named GeneRalized Autocal-

ibrating Partially Parallel Acquisitions (GRAPPA) [43]. It extends the fitting by

using data from multiple lines from all coils to fit an ACS line in a single coil. Better

quality and higher SNR images can be obtained [43]. Non-Cartesian k-space samples

such as spiral was also used with GRAPPA [44]. The missing spirals are estimated

using the weighed averages of the neighbor points in a similar way as in Cartesian

GRAPPA.

3.2.2 SENSE

Compared with SMASH, SENSE makes no assumptions on the coil configu-

ration and k-space sampling pattern (recent GRAPPA method also eliminates this

limit [44]). The method was applied to Cartesian k-space samples when it was first

proposed [13]. Later it was generalized to arbitrary k-space trajectories [45].

3.2.2.1 SENSE with Cartesian Samples

In two dimensional Fourier image, SENSE reduces the total sampling time by

reducing the number of phase encoding steps. This is achieved by increase the dis-

tance between two phase encoding lines while maintain the same maximum k-space

value. The factor that describes the reduced number of k-space samples compared

to the fully sampled on is referred to as reduction factor R [13]. In standard Fourier

imaging, reducing the k-space sampling density will cause a reduced FOV and thus

alias artifact in image domain. This aliasing cannot be undone in that case. SENSE
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made the recovering from the aliased image possible by incorporating the coil sensi-

tivity information.

SENSE reconstruction includes two steps. Firstly, a reduced-FOV image is

created for each of the array coils. When the k-space is sampled on the Cartesian

grid, the aliasing artifact is simply the superposition of the parts of the image that

fall out of the reduced FOV. The second step is to undo the fold-over effect to create

a full-FOV image. Figure 3.1 shows the flow of these steps. The key lies in the non-

uniform-valued coil sensitivity maps. For each single coil image, the superposition

is the sum of different weighted pixel values. For a specific pixel in the reduced-

FOV image, let np be the number of pixels in the full-FOV image superposed at that

position. Then the values of the np corresponding full-FOV image pixels superposed

at that position v can be recovered by

v = Ua (3.4)

where a is a length nc vector, with nc the number of coils, containing the complex

pixel values in the reduced-FOV images. U is an np × nc matrix called the unfolding

matrix [13].

U = (SHS)−1SH (3.5)

where S is a nc × np sensitivity matrix. There is a noise term in the expression of U ,

but it is typically very small such that is always omitted [13]. The elements in S is

expressed as

Sγ,ρ = sγ(rρ). (3.6)
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Figure 3.1: SENSE reconstruction.

where sγ is the sensitivity of coil γ and rρ is the position of th pixel ρ.

Solving equation 3.4 requires np ≤ nc, i.e. the reduction factor is bounded by

the number of coils [13]. Solving for each pixel in the reduced-FOV image, a full-FOV

image can be obtained. The entire procedure is illustrated in figure 3.1.

SENSE can be generalized to 3D MRI, where aliasing in two phase-encoding

dimensions are obtained. This is referred as 2D SENSE [46]. The total reduction

factor is the product of the two reduction factors in those two dimension.

3.2.2.2 Coil Sensitivity Map

In SENSE, coil sensitivity map is often obtained from reference scans. Since

the purpose of SENSE is to reduce the sampling time, these reference scans should

be low resolution acquisitions such that the scan time of these data will not affect

the total sampling time. Pruessmann et al. proposed a standard method, which is

based on interpolation and extrapolation (polynomial fitting and region growing) of

the raw maps obtained by division of the thresholded reference images from surface

coil and body coil [13].
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There are other methods to compute sensitivity map such as using adaptive

matched filter [47] and wavelet smoothing [48]. Auto-calibration is also possible by

extracting sensitivity information from the densely sampled k-space center [49].

The sensitivity maps have smooth, slow varying profile. With adequate smooth-

ing during computation, the error in sensitivity maps is typically negligible [13].

3.2.2.3 Non-Cartesian Samples

As mentioned in the previous chapters, non-Cartesian sampling patterns such

as spiral has many advantages over Cartesian samples. However, extending the

SENSE method into non-Cartesian trajectories is not straight forward. Spiral tra-

jectory, for example, generates continuous, ring-shaped aliasing artifact rather than

simple superposition. This makes it unusable to apply the unfolding method. Itera-

tive method is used to solve this kind of problem [45].

The method uses a generalized encoding matrix notation. The MR encoding

can be represented using a matrix formula

Ex = b (3.7)

where x is the object (image) vector, b is the k-space samples vector and E is the

encoding matrix. x is obtained by iteratively solve the following equation

(EHE)x = EHb (3.8)

In parallel imaging, where there are multiple coils, each coil has its own encoding

function and k-space samples. The encoding matrix E becomes a large matrix that
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contains all the coil encoding matrices E = [E1E2 · · ·Enc
]T ,Ei, i = 1, 2, . . . , nc are the

encoding matrix for coil i, nc is the number of coils. Similarly, the sample vector

b = [b1b2 · · · bnc
]T . Thus, equation 3.8 can be expressed in a blocked matrix format

as:

[EH
1 E

H
2 · · ·EH
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(3.9)

Gridding algorithm have already been successfully used in SENSE reconstruction to

construct E and EH [45].

There are possible improvements on the Non-Cartesian SENSE method. Re-

construction method other than gridding, such as NUFFT, has been incorporated into

SENSE [50]. A priori information has also be used for image quality improvement,

such as POCSENSE [51].

3.2.3 Summary on Parallel Imaging

Parallel imaging techniques are commercially available now. In clinical rou-

tines nearly all MRI methods can be achieved by parallel MRI to increase scan speed

with out the need of upgrade the gradient system. Parallel imaging technique can

also improve the image quality and SNR ratio.

For non-Cartesian sampling patterns, k-space based method GRAPPA utilizes

sensitivity information to perform k-space interpolation. Full FOV images from each

coil are reconstructed, which are then combined using sum of square method. There
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is no explicit sensitivity map computations. SENSE uses sensitivity information in

image domain. It adopts an iterative method, simulating the frequency encoding and

coil sensitivity encoding from image domain to k-space.

Numerical comparison showed that SENSE has lower artifacts than SMASH [52].

GRAPPA has better image quality than SMASH and VD-AUTO-SMASH [53]. When

high quality coil sensitivity maps are available, SENSE will produce a better image.

When this information is not available, then GRAPPA is a better choice [53].

In the parallel imaging applications used in this thesis, such as phantom, fruit,

brain, cartilage, etc. the sensitivity map is obtainable. So this work is based on the

SENSE method.

3.3 Evaluation of SENSE with

Gridding, BURS and NUFFT

Besides gridding, BURS and NUFFT can be incorporated in SENSE. A recent

research showed that reconstruction from least square (LS) NUFFT in SENSE has

smaller image error compared with using gridding [38,50]. BURS has been applied in

k-space based parallel reconstructions such as PARS [54, 55]. In this section, we will

compare the similarities and differences of these methods. Then in the next section

we will show reconstruction from simulations and in vivo reconstructions.

In the above iterative SENSE framework, the construction ofE and EH can use

any available methods. The equations from different methods discussed in previous

sections are re-write here in a similar matrix-vector operation format, followed by
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comparison and performance evaluation.

3.3.1 Gridding

It has been shown that SENSE with gridding can efficiently reconstruct image

from arbitrary k-space samples [45]. Gridding defines a decoding procedure which

recovers image x directly from k-space samples b as

x = PFHTDb (3.10)

where P is an N -by-N diagonal matrix used for post-compensation, N is the total

number of pixels in x, F is FFT operation and FH is equivalent to inverse FFT

operation with a different scaling factor, T is a sparse N -by-M interpolation coeffi-

cients matrix which performs interpolation from density compensated non-Cartesian

samples to Cartesian grid points, M represents the number of k-space samples, and

D is an M-by-M diagonal matrix with sampling density compensation values on its

main diagonal. P , T and D are all real-valued matrices. The coefficients in T are

computed using the convolution-resampling method as defined in gridding [15]. T is

sparse because of the finite length of convolution kernel. That is, for a given Carte-

sian grid point, which corresponds to one row in T , the interpolation coefficients from

most of the non-Cartesian samples are 0 except those fall into the neighboring region

within the interpolation kernel.

Because encoding and decoding operations are complex conjugate of each

other [45], the encoding matrix in gridding method is defined as

E = THFPH = THFP (3.11)
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The DCF matrix D is not necessary in the encoding step because of the uniform

density of Cartesian grid. For parallel imaging, taking the coil sensitivity into account,

the encoding matrix for one coil is

Ei = THFPCi (3.12)

where Ci is a complex-valued diagonal matrix of dimension N -by-N , with sensitivity

values of the i-th coil on its main diagonal.

The overall parallel reconstruction problem using gridding is

nc
∑

i=1

(CH
i PF

HTDTHFPCi)x =
nc
∑

i=1

(CH
i PF

HTDbi) (3.13)

where nc is the total number of coils. D in equation 3.13 serves for preconditioning

purpose, which can improve the convergence speed of the iterations [45].

The iterative SENSE reconstruction with gridding is illustrated in figure 3.2.

Only one coil channel is shown. The operation order of Ci and P are interchangeable

because they are both diagonal matrices.

3.3.2 BURS

In a matrix format, blocked uniform resampling (BURS) can be written as

Ay = b (3.14)

where y = Fx is the Fourier transformation of image x, and A is an interpolation

coefficient matrix with dimension of M-by-N . y is determined by

y = (AHA)−1AHb = A†b (3.15)
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Figure 3.2: Iterative SENSE reconstruction.

using SVD. The image x is then obtained by directly performing an inverse FFT on

y.

BURS can also be incorporated in the iterative SENSE reconstructions. Be-

cause only a few Cartesian grid points are used to interpolate each non-Cartesian

sample, A in equation 3.14 is in sparse format. In fact we have

A = TH (3.16)

where T is the interpolation matrix in equation 3.10 in the gridding method. Con-

structing and storing A is not difficult with sparse matrix techniques. However, SVD

computation of A† is still not practically feasible, construction of the local problems

of equation 2.10 is still required. Ā uses the values in A, and the computed Ā† is put

back to the corresponding positions in A†. A† is also a sparse matrix.
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If a better interpolation function such as Kaiser-Bessel kernel is applied instead

of the original truncated sinc, the encoding operation in BURS is expressed as

AFPx = b (3.17)

and

E = AFP (3.18)

where P is a compensation operator as in gridding to compensate the effect of Kaiser-

Bessel kernel.

Using similar iterative algorithm as in ref. [45], the overall parallel reconstruc-

tion problem using BURS becomes

nc
∑

i=1

(CH
i PF

HA†AFPCi)x =
nc
∑

i=1

(CH
i PF

HA†bi) (3.19)

Considering equation 3.15, the difference in equation 3.13 and 3.19 is that TD = AHD

being replaced by A† = (AHA)−1AH . As mentioned before, gridding uses diagonal

matrix D to approximate the more generalized compensation matrix A(AHA)−2AH ,

which involves matrix inversion and is typically numerically unstable as the problem

is often ill-conditioned [31]. Regularization method such as truncated SVD (TSVD)

or Tikhonov regularization is applied in BURS to stabilize the computation [21, 54].

3.3.3 NUFFT

NUFFT contains two general steps: a regular FFT operation on the image x,

which results in Cartesian grid k-space samples, and an interpolation of these grid
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data onto the non-Cartesian trajectory b.

AFPx = b (3.20)

where A denotes interpolation coefficient matrix, which is again sparse, performing

interpolation from Cartesian grid to non-Cartesian samples. P is a scaling factor

to pre-compensate for imperfections in later interpolation, which may be complex-

valued [19]. P can be considered to be similar to post-compensation for interpolation

kernel.

Reconstruction using NUFFT is to solve the following least square problem

PHFHAHAFPx = PHFHAHb (3.21)

Reconstruction using NUFFT is typically implemented by iteratively solving equa-

tion 3.21 using least square method [19].

For parallel imaging, NUFFT defines an encoding operation from the image

to k-space samples as

E = AFPCi (3.22)

The overall parallel reconstruction problem using NUFFT is

nc
∑

i=1

(CH
i P

HFHAHAFSCi)x =
nc
∑

i=1

(CH
i P

HFHAHbi) (3.23)

Comparing equation 3.23 and 3.13, although they are defined using two differ-

ent methods, they have a very similar form. For non-parallel reconstructions, gridding

is simply one-time interpolation from k-space samples to Cartesian grid. In parallel

SENSE reconstruction, however, it adopts an iterative encoding/decoding procedure
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with feedbacks from image to k-space. The idea is similar to NUFFT reconstruction.

The main difference is that gridding has a density compensation matrix which acts

as a weighting factor.

3.4 Implementation

In this section reconstructions using the methods discussed above from both

2D and 3D data set are performed.

3.4.1 Simulation

In computer simulations, a four channel phased array coil (surface coils) with

rectangular elements surrounding the phantom without overlapping was simulated,

as shown in figure 3.3.

object

surface coils

Figure 3.3: Coil arrangement for parallel imaging.

A 2D modified Shepp-Logan phantom was used as a standard image [56]. Coil

sensitivity maps were computed based on the Biot-Savart Law [57, 58]. The k-space

spiral sampling trajectory contains 32 interleaves, with 2048 points on each interleaf.
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Reduced sample data sets used 16 equally spaced interleaves to simulate a reduction

factor of 2. Figure 3.4 illustrates one spiral interleaf, modified Shepp-Logan phantom

and the aliased image obtained by computing the sum of square of image from each coil

with reduced data. The contrast of the sum of square image was adjusted to illustrate

the alias artifact. Image resolution was set to 256× 256. In gridding reconstruction,

the convolution kernel was a Kaiser-Bessel window with width 4, and β was chosen

according to ref.[15]. The density compensation in equation 3.13 was pre-computed

using the Voronoi method [24]. The min-max interpolation kernel using 4 points was

used for NUFFT [19]. The interpolation kernel in BURS was Kaiser-Bessel with the

same parameters as in gridding. Block size was set to 8, ∆k = 4, δκ = 3, TSVD

threshold was 0.01.

Figure 3.4: Left: 2D Spiral trajectory. Middle: Phantom image. Right sum of square

image from each coil.

A 3D modified Shepp-Logan phantom was used for 3D simulations, as shown
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Figure 3.5: 3D modified Shepp-Logan phantom. The 3 sub-images are x-y, x-z and

y-z section images.

in figure 3.5. Two sampling patterns were used, stack of spiral and projection recon-

struction (radial) trajectories, as illustrated in figure 3.6. The spiral set contained 8

stacks, one per kz phase encoding location. There were 8 interleaves per stack, with

2048 points on each interleaf. Image resolution was 128× 128× 8. Again a reduction

factor of 2 was simulated by using 4 interleaves on each stack, which means no alias

along z direction. The reconstruction parameters along kx and ky were the same as

in 2D. The width of the interpolation kernel along kz direction was set to 2. DCF in

gridding was computed using the 2D Voronoi method for each slice, neglecting the

interference of points on neighboring slices. Block size along kz in BURS was set to

1, ∆kz = δκz = 1.

The k-space samples along the 3D projection reconstruction (radial) trajectory
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(a) Stack of spiral (b) Projection reconstruction
(radial)

Figure 3.6: 3D trajectories.

consists of 13106 radial half-lines with 32 samples apiece for a 128×128×128 element

volume. The maximum sample spacing was the same in all directions, as well as

the spacing along the outermost sphere, corresponding to an isotropic FOV. The

reconstructed image resolution was 128 × 128 × 128. A reduction factor of 2 was

achieved by removing half of the radial lines evenly distributed through 3D k-space.

So in this case the alias appears in all dimensions. Kernel width was set to 2 in all

dimensions for all the methods. In BURS, the block size is set to 2, ∆k = δκ = 2,

TSVD threshold was 0.01. Accurate DCF using 3D Voronoi tessellation method is

too computationally demanding. A simpler version which computes the square of the

distance to the origin was used [59].

The performance of the methods were evaluated in the sense of root mean

square error (RMSE), which was computed as

ε =

√

√

√

√

√

∑

i

(x(i)− p(i))2

N
(3.24)
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where p is the phantom image and x is the reconstructed image, N denotes the total

number of pixels.

3.4.2 MR data Reconstruction

Phantom and in vivo images were acquired on a GE 1.5T LX scanner using a

four channel phased array coil. The coil arrangement was similar to the simulations.

The same 2D and 3D sampling trajectories as in the simulations were used. The

reconstruction parameters were also the same as in the simulation section.

For 2D images, the 256×256 image covered a FOV of 20×20 cm2 with in-plane

resolution of 0.8mm. A reduction factor of 2 was achieved by acquiring 16 interleave

of spirals out of 32. Low resolution fully sampled body coil and phased array coil

reference images were used to compute coil sensitivity maps. The reference image

was 1/4 of the full resolution.

For the 3D stack of spiral acquisitions, the FOV was 28× 28× 2.7 cm3 , with

image resolution of 128 × 128 × 8. Again a reduction factor of 2 was applied by

acquiring 4 interleaves out of 8 on each stack. Fully sampled body coil and phased

array coil images were used as references to compute the 3D coil sensitivity maps. In

clinical application this kind of reference data acquisition will counteract the merit

of parallel imaging. But here in experiment step it is only used to obtain the coil

sensitivity map, which will not significantly affect the final reconstruction.

The 3D projection reconstruction samples covers a FOV of 24× 24× 24 cm3.

Half of the radial line were removed to achieve a reduction factor of 2. Again full
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resolution projection reconstruction acquisitions of both body coil and phased ar-

ray coil images were used as references to compute 3D coil sensitivity maps. The

reconstructed image resolution was 128× 128× 128.

A zero image was used as the starting image of the iterations, and the recon-

struction was terminated after a predefined number of iterations. All three recon-

struction methods (SENSE with gridding, BURS, and NUFFT) were implemented in

MATLAB (Mathworks, Natick, MA). The programs were tested on a Linux computer

with Intel P4/3.2G CPU and 2GB of memory.

3.5 Results

Figure 3.7: Reconstructed 2D images and difference with phantom. Left column:

gridding. Middle column: BURS. Right column: NUFFT.
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Figure 3.8: RMSE of 2D simulations.

Figure 3.7 shows the reconstruction of 2D simulations using gridding, BURS

and NUFFT methods after 40 iterations. The difference images compared with the

standard phantom were also shown. The convergence of RMS errors were compared

in figure 3.8. Gridding has the fastest convergence rate. The final RMS error values

after 40 iterations are very close to each other, which is 0.0217 for gridding, 0.0219

for BURS, and 0.0221 for NUFFT.

2D MR data reconstruction results and body coil reference image and sum

of square of aliased images from each coil are shown in figure 3.9. 40 iterations

were performed for the phantom image in the top row. TSVD threshold in BURS

was 0.01. For the in vivo image in the bottom row, a total of 15 iterations were
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Figure 3.9: Reconstruction from 2D MR data. Top row: GE cylinder phantom image.

Bottom row: in vivo brain image. Images from left to right: full resolution body coil

reference image, gridding reconstruction, BURS, NUFFT, sum of square image from

each coil. The contrast of the sum of square images were adjusted to clearly show

the alias.
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performed. TSVD threshold in BURS was 0.1. The image qualities at locations in

the object are similar. But in all the methods there are some kind of background

noise amplification. In BURS and NUFFT this phenomenon is more obvious. The

computation time for each iteration is around 1.4 second for all three methods.

Figure 3.10: Reconstructed images and difference with 3D stack of spiral simulation.

Left two columns: two slices of reconstructed images. Right two columns: corre-

sponding difference images. Top row: gridding reconstruction. Middle row: BURS.

Bottom row: NUFFT.
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Figure 3.11: RMSE of 3D simulations with stack of spiral trajectory.

Figure 3.10 shows the reconstruction of 3D simulations with stack of spiral

sampling pattern. A modified 3D Sheep-Logan phantom was used [60]. Two of the

eight slices and the corresponding difference images after 40 iterations are shown.

Both the reconstructed images and the difference images of the three methods look

similar to each other. RMS error convergence are shown in figure 3.11. The final

RMS error value is 0.0261 for all three methods. Gridding still shows the fastest

convergence speed relative to the number of iterations. The computation time for

each iteration is 4.9 seconds for gridding, 4.5 seconds for BURS and 5.4 seconds for

NUFFT.

Reconstruction from 3D simulations with radial trajectory is shown in fig-



www.manaraa.com

52

Figure 3.12: Reconstructed images and difference with 3D radial trajectory simula-

tion. Left three columns: x-z,x-y and y-z slices of reconstructed images. Right three

columns: corresponding difference images. Top row: gridding reconstruction. Middle

row: BURS. Bottom row: NUFFT.
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Figure 3.13: RMSE of 3D simulations with radial trajectory.

ure 3.12. The image resolution is 128 × 128 × 128. Reconstructed and difference

images from x-y, y-z and x-z planes are shown. For this large data set, the slow con-

vergence of NUFFT results in a blurred reconstruction after 40 iterations. This is also

revealed in the RMS error convergence plot in figure 3.13. The NUFFT reconstruc-

tion has a larger RMS error compared with the other two methods. The final value

after 40 iterations is 0.0417 for gridding, 0.0458 for BURS, and 0.0690 for NUFFT.

The computation time for each iteration is 58 seconds for gridding, 51 seconds for

BURS and 48 seconds for NUFFT. Note from the plot that RMSE curve of NUFFT is

continuously decreasing. With enough number of iterations, it is possible to converge

to the same RMSE level as gridding and BURS as in the 2D and 3D stack of spiral
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cases.

Figure 3.14: Reconstruction from 3D MR data. Top row: reconstruction from 3D

stack of spiral samples. Bottom row: reconstruction from radial samples. Left two

columns: gridding reconstruction. Middle two columns: BURS reconstruction. Right

two columns: NUFFT reconstruction.

3D reconstruction from MR data were shown in figure 3.14. In the stack of

spiral case, the image qualities are similar. There are still obvious background noise

amplifications in BURS and NUFFT. In the radial sampling case, there are noise

amplification beyond the object support in all the three methods. The images shown

were post-processed by applying a circle mask around the object to suppress the

background noise. NUFFT reconstruction is blurred compared with gridding, which

is consistent with the simulation case. The BURS reconstruction contains larger

errors inside of the object. The TSVD threshold was set to 0.1. A better threshold
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value in TSVD may improve the BURS image quality. But the optimal value is not

easy to obtain.

3.6 Discussion

Reconstruction of parallel MR imaging using the iterative SENSE algorithm

can be achieved by a variety of methods. Gridding, BURS and NUFFT can all be

incorporated. The system equations share a similar form.

The interpolation coefficient matrix T in gridding and A in BURS are the

transpose of each other. The matrix A in min-max NUFFT has the same non-

zero elements as in gridding and BURS, but it is complex-valued. So the storage

requirement is doubled. Computation of density compensation D in gridding can be

achieved in a variety of ways, the computation can be very simple by using ADF, or

complex by the Voronoi method. The pseudoinverse matrix A† in BURS is computed

using SVD, which in general is a computation demanding step. NUFFT does not

require any other pre-computations besides A.

The computations in each iteration for all the methods includes FFT, IFFT

and some matrix-vector multiplications. These multiplications are A, diagonal matrix

D, and AH in gridding, A and A† in BURS, and A and AH in NUFFT. In BURS

A† is also sparse. The number of non-zero elements depends on the values of ∆k

and δκ, but is similar to that in A. So the total number of such multiplications are

similar in the above three methods. But because NUFFT has complex valued A, the

computations are doubled. These comparisons are summarized in table 3.1.
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gridding BURS NUFFT

Interpolation matrix T (= AH) A A with complex values

Other pre-computation D A† none

Computations FFT, IFFT, FFT, IFFT, FFT, IFFT,

AHDA A†A AHA

Table 3.1: Comparison of gridding, BURS and NUFFT in SENSE.

In summary, gridding, BURS and NUFFT can all be applied in SENSE. Grid-

ding has the fast convergence speed and relatively smaller RMS errors and back-

ground noise. The rest of this thesis will focus on the reconstruction using gridding

and SENSE.
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CHAPTER 4

REGULARIZATION, GRID SIZE, AND INTERPLATION

COEFFICIENT

In this chapter, methods that improve reconstruction quality and reduce the

computation and storage burden for parallel MRI reconstructions are proposed and

evaluated via computer simulations.

4.1 Method

4.1.1 Edge Preserving Regularization

As mentioned in the previous chapter, the measured sample data b and the

original image x can be related in a linear model as

b = Ex+ n (4.1)

where n is white Gaussian noise and E is the encoding matrix which is a linear

operator. In the framework of least-square or maximum a posteriori (MAP), the

estimated image x̂ is given by

x̂ = arg min
x

(ψ(x)) (4.2)

where ψ is an objective function to be minimized. Typically

ψ(x) = ||b− Ex||2 (4.3)

The problem of reconstruction is often an ill-posed problem [61–63]. Many

different images can be obtained from data b. A priori information is thus necessary to
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be imposed on the image reconstruction to regularize the result. It is often expressed

as an additional regularization term in the objective function.

ψ(x) = ψ1(x) + λψ2(x) (4.4)

where ψ1 is a term that measures the faithfulness of the result to the data, such as

in equation 4.3. ψ2 is the regularization function, or penalty function, which is also

called as a potential function in the Markov random field approach [62, 64]. λ is a

positive penalty coefficient that balances the two terms.

A more generalized version of objective function is a penalized weighted least-

square (PWLS) function [65]. The form is as follows

ψ(x) =
1

2
(b− Ex)HΣ−1(b− Ex) + λψ2(x) (4.5)

where Σ is a diagonal matrix with weighting factors on its main diagonal.

The penalty term ψ2 can be chosen from a variety of forms, or the combination

of many different penalty functions

ψ2(x) = λ1ψ21(x) + λ2ψ22(x) + · · ·+ λnψ2n(x) (4.6)

There are some assumptions about the property of the image. One assumption

is that the image is globally smooth. A quadratic potential function can be imposed

on the image as a roughness penalty. However, this penalty tends to yield an over-

smoothed image [66]. A more realistic assumption is that the image contains piecewise

smooth regions separated by edges, which is called edge-preserving roughness penalty,

or edge-preserving regularization [64, 66]. A non-quadratic potential function ψ2 is

needed in this circumstance.
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ψ2 can be defined in many ways to achieve different edge-preserving require-

ments. It is, in general, the sum of the functions of a derivative of the image. Char-

bonnier et al. proposed several conditions for the potential function based on the

assumption that a large value in the gradient corresponds to an edge while a small

one is due to noise [62]. Table 4.1 shows several forms of ψ2 [62, 66, 67]:

quadratic ψ(x) = x2/2

hyperbola ψ(x) =
√
δ2 + x2 − δ2

Huber function ψ(x) =



















x2/2 |x| ≤ δ

δ|x| − δ2/2 |x| > δ

broken parabola ψ(x) = min{x2, δ2}

Table 4.1: Penalty functions.

The δ is a regularization parameter depending on the noise level. Figure 4.1

illustrates the shape of these functions.

Geman et al. [68] introduced a set of functions Dk
C , k = 1, 2, 3 for the k-th order

derivative on a clique C to measure the priori smoothness constraint. The clique C

is defined as any pair of horizontal, vertical or other adjacent pixels. In 2D, for the

first order case, two adjacent pixels (s, t) are considered. Their relationship is shown

in figure 4.2. D1
CX is in fact the intensity difference of the two pixels. This nearest

neighbor model does not consider the diagonal adjacent pixel, so it will introduce
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quadratic

hyperbola

Huber

broken parabola

Figure 4.1: Potential functions.

(1)
s•

t•
(2) s• t•

D1
C(X) = Xs −Xt, C = (s, t)

Figure 4.2: First order clique.
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(1)

s•

t•

u•

(2)
s• t•

u• v•
(3) s• t• u•

D2
C(X) =



















Xs − 2Xt +Xu if C is of type (1) or (3)

Xs −Xt −Xu +Xv if C is of type (2)

Figure 4.3: Second order clique.

a bias towards the vertical and horizontal edges [68]. For the second order case,

the second differences are considered, i.e. the differences between components of the

gradient at adjacent pixels. There are three types of cliques as shown in figure 4.3.

Here D2
C(X) corresponds to the discrete approximation to the difference between

elements of the gradient vector [68].

First and second order schemes are most useful in practical applications. Third

and higher orders are too complex and are thus rarely used [63]. In 2D cases, the

first order for the nearest four pixels and second order for the nearest eight pixels are

the most studied neighbors. In most 3D problems, the cross slice distance is typically

larger than that on the same slice. The neighbor points in the third dimension can

be limited to the first order only, i.e. one pixel at the corresponding position on the

upper slice and one on the lower slice. Villain et al proposed a fast implementation

using only two elements cliques to limit the computational cost [63]. The gradient D
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1

1

Figure 4.4: 3D neighbor points and weighting coefficients.

is defined as

D =
∆I

d
(4.7)

where ∆I is the intensity difference of the two elements and d is the weighting factor.

For neighbors in the same slice, d is 1 for horizontal and vertical neighbors and 1/
√
2

for diagonal neighbors. For cross slice neighbors above or below the current element,

d = δz/δx which is the ratio of cross-slice and in-slice distance [63, 65]. Figure 4.4

demonstrates the neighbor points scheme and their corresponding weights.

As an example, the cost function for the simplest quadratic penalty is [65]

ψx(x) =
1

2
xTRx =

1

2

∑

j

∑

k∈C

wjk

1

2
(xj − xk)

2 (4.8)

where C is the clique of adjacent pixels. For other penalty term such as Huber

function, the (xj − xk)
2 in equation 4.8 is replaced by the corresponding functions as

described in table 4.1.
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4.1.2 Iterative Method To Calculate

Penalty Coefficient

The penalty coefficient has great impact on the reconstruction. Small val-

ues typically results in little improvement. While large values tends to yield over-

regularization with strong alias artifact and large RMSE [65]. In MRI image re-

construction, empirical coefficient values are often used [19, 69, 70]. Other methods

include testing the penalty function on simulated data of the same size among varies

of parameters. Then chose the one with best performance for in vivo applications [71].

The limitation of these methods is that the derived coefficient form one data does not

always suitable for other MR data.

This thesis uses an iterative penalty coefficient estimation method. It follows

similar logic as in the trust region or restricted step optimization method [72]. Varying

penalty coefficient is applied during iterative reconstruction. A threshold is applied

on the change of each step. A step-ratio is defined as the ratio of the metric from

current iteration over that from the previous iteration. The assumption is that the

change in steps becomes smaller when the search function approaches the solution.

In implementation, the first several iteration steps are excluded from the step-

ratio thresholding to avoid the impact from the starting value. While after many

iterations when the search function is close to solution, the search step becomes

relatively small. Due to the existence of noise in data and non-accuracy of system

encoding matrix calculation, it may fluctuate around the solution. So the step-ratio

limitation is applied to the intermediate iterations which excludes the starting and
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ending steps.

The penalty coefficient starts from a small value, which corresponds to very

little constraint. With each iteration, this coefficient increases by a predefined factor

(for example, 10). The new search step is calculated with the impact of current

penalty coefficient. If the ratio between the new and old search step is smaller than

the step-ratio threshold, this coefficient value is accepted. Then in the next step the

coefficient continue to increase. If the ratio between steps is larger than the step-ratio

threshold, it denotes the penalty coefficient puts too much constraint on the solution.

The coefficient is decreased. Then the search step is re-calculated. The iterations

continue until the a certain iteration number is reached. The penalty coefficient at

the last step is the one to be used in the penalty function. The steps are illustrated

in figure 4.5.

4.1.3 Object Support Regularization

Besides the general piecewise smooth assumption, other a priori information

can be included. Object support constraint is proposed in POCSENSE (Projection

onto Convex Sets SENSE) method [51], which helps to reduce background noise

outside of the object to be imaged.

The SENSE methods calculates coil sensitivity maps explicitly, either using

reference images or deriving from self-calibrated samples. The sensitivity information

is accurate on image part by comparing reference images. But in background area the

values are computed based on the interpolation-extrapolation method [13]. As shown
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Figure 4.5: Step-ratio method flow chart.
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in figure 4.6, the sensitivity in the background are different compared with the true

values, which may cause the amplification of background noise. This is illustrated in

figure 4.7(a)-(c).

(a) Simulated sensitivity map (b) Computed sensitivity map

Figure 4.6: Ideal simulated coil sensitivity map and computed sensitivity map.

Object support constraint can help to suppress background noise. The object

support S is defined as an logical matrix with 1 represents an pixel in object and 0

for background.

ψ2(x) = xRx (4.9)

Rii = 1− S(i) (4.10)

where x is the image vector, R is a diagonal matrix with 1−S(i) on its main diagonal.

ψ2(x) is a measure of the background noise. Minimizing ψ2(x) results in minimization

of background noise. The effect of object support constraint was illustrated in 4.7(d)-

(f).
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Image reconstruction with and without object support constraint. Top

row: reconstruction without object support constraint. Bottom row: reconstruction

with object support constraint. Left column: simulation, noise σ = 0.02. Middle

column: simulation, noise σ = 0.05. Right column: in vivo reconstruction. The

contrast of the images are adjusted to show the background noise.
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(a) Noisy image (b) Raw object support (c) final object support

Figure 4.8: Computation of object support.

The object support is computed as follows. First the noise level in image is

estimated to obtain a threshold value. Each x−y plane image is smoothed by a 3×3

Gaussian window. The mean µ and standard deviation σ of the difference with the

original image is then computed. This is supposed to be the noise mean and standard

deviation. The threshold is defined as µ + nσ where n is an adjustable small value

(for example, 3). A raw support is then computed by thresholding the image and

converting to a binary mask. Then a dilation-erosion operation is performed to obtain

a final support with holes in image filled. An example of these images were shown in

figure 4.8. There are two difference compared with POCSENSE: the object support is

updated during iteration; an user defined penalty coefficient controls the strength of

suppression during iteration instead of setting everything outside the object support

to zero.
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4.1.4 Smaller Oversampling Ratio

For large 3D problems, such as in the radial trajectory case, the computa-

tion burden and computer memory and storage requirement are also practical fac-

tors for the implementation. The previous sections focused on methods to improve

image quality. Those methods introduce more computation complexity to the recon-

struction. In the following sections, methods that help reduce the computation and

memory requirement are analyzed.

Image alias has been discussed in previous chapters. Examples of alias patterns

are shown in figure 4.9. Figure 4.9(a) shows the case of Cartesian sampling pattern,

where the alias is simply periodic replica of images. As long as the Nyquist sampling

theory is satisfied in k-space, the alias will not affect the center image. However, for

non-Cartesian sampling patterns, the alias is highly irregular. The alias for spirals

samples, for example, are shown in figure 4.9(b)-(e). Part of the alias will enter into

the image, causing reconstruction errors. To minimize the alias effect, in practice a

larger grid size in k-space is often used during reconstruction. Oversampling ratio of 2

(2x grid) is widely accepted [15,19,20]. As shown in figure 4.9(b), which is spiral image

with 2x grid, the center part is a good reconstruction. If smaller oversampling ratio

is used, alias may appear in the center part of the image, as shown in figure 4.9(c)-(e)

with oversampling ratio of 1.5, 1.25 and 1 respectively. Typically larger oversampling

ratio will provide better images. But due to extra computation cost, values larger

than 2 are rarely used [19].

The oversampling ratio of 2 increases the computation burden as well as mem-
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(a) Cartesian aliasing (b) spiral 2x grid

(c) spiral 1.5x grid (d) spiral 1.25x grid (e) spiral 1x grid

Figure 4.9: Oversampling ratio and alias artifact. The spiral images were recon-

structed using gridding with Kaiser-Bessel kernel with width=2 and β = 4.2054. The

contrast of the images are adjusted.
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ory requirement to store the enlarged image. For example, a 3D image will require

8 times memory for intermediate images, and the computation time of FFT will also

be more than 8 times. Recently gridding with oversampling ratio smaller than 2 was

proposed by Beatty et al. [26]. Minimal oversampling ratio of 1.125 and 1.375 were

applied with gridding to obtain accurate images in the sense of aliasing amplitude

remained in the image. Different set of optimal parameter for the Kaiser-Bessel kernel

were provided for different oversampling ratios [15, 26]. Parallel MRI reconstruction

could use these new parameters with smaller oversampling ratio too. It needs fur-

ther evaluation due to data noise, and additional impact from coil sensitivity maps.

Experiments on this factor are shown in the following sections.

4.1.5 Compressing Interpolation

Coefficient Matrix

Data compression essentially eliminates less important data from the compu-

tation to make large size data computation feasible. For example, a recent study

by Buehrer et al. showed that it is possible to compress a 32-channel MR data into

4-channel to alleviate the computation speed and memory constraints [73]. Similarly,

it is possible to compress the gridding interpolation coefficient matrix.

The total number of interpolation coefficients in the interpolation coefficient

matrix T in equation 3.10 is J ×M , where J is the number of neighbors in the inter-

polation and M is the total number of k-space samples. The optimal interpolation

kernel used in gridding is Kaiser-Bessel function [15]. Figure 4.10 shows the plot of
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one and two dimensional Kaiser-Bessel functions.
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(a) 1D Kaiser-Bessel kernel (b) 2D Kaiser-Bessel kernel

Figure 4.10: Kaiser-Bessel interpolation kernel. β = 7.4302.

The value of interpolation coefficients decrease with the distance. Figure 4.11

shows an example of all the sorted coefficients in T . It can be seen from this specific

example that with maximum coefficient value as 1, there are about 20% of the values

are smaller than 0.01.

Larger kernel width J can improve the reconstructed image quality [15, 19].

But it also increases the number of non-zero coefficients JM . However, there are

small coefficients values, as shown in figure 4.11, which have small impact on the

interpolation. It is possible to eliminate these small coefficients without large sacrifice

on the image quality. Figure 4.12 shows reconstructed 2D image with kernel width 4

and 2. The image size is 256 × 256. The total number of k-space samples is 32768.
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Figure 4.11: Interpolation coefficients.

With width 4 along x and y dimension, the total non-zero interpolation coefficients

is 524288. For width 2 this number is 131072. The RMS error of the reconstructed

images after 40 iterations are 0.0218 and 0.0241, respectively. If eliminating 36% of

the coefficients with small values, the RMSE changes to 0.0220, which is only 1%

more compared with the case of no elimination.

4.2 Implementation

The methods proposed in the previous sections were tested using computer

simulations. Three type of sampling trajectories were used. Stack of spiral (SS) and

radial (RAD) are the same as in chapter 3. The third sampling pattern is stack of

spiral with variable rotations (SSv). It is similar to the stack of spiral trajectory. But

the number of spirals on each stack is different. From bottom to top the numbers

are 4 6 8 8 8 8 6 4. This trajectory already reduces some samples at high frequency

locations in k-space. The corresponding image resolution is also 128× 128× 8.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Reconstructed image and the difference with phantom using different

interpolations. Left column: Kaiser-Bessel kernel with width 4. Middle column:

Kaiser-Bessel kernel with width 2. Right column: Kaiser-Bessel kernel with width 4,

36% small values are eliminated. The contrast of the images were adjusted.
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Figure 4.13: 3D cylinder phantom. The 3 sub-images are x-y, x-z and y-z section

images.

Two numerical phantom were generated for simulation: a 3D modified Shepp-

Logan phantom [56] as used in the previous chapter, and a 3D cylinder phantom

with circle, square, line, comb shapes as shown in figure 4.13. Gaussian noise with

σ = 0.03 and σ = 0.06 were added to the phantoms.

Each of the methods mentioned in previous sections were tested separately.

RMSE between the reconstructed image and noise free phantom was used to evaluate

the performance. It was compared with that from conventional iterative SENSE

plus gridding reconstruction. Step-ratio method was used to the estimate penalty

coefficient for edge-preserving penalty and object constraint penalty. To evaluate the

performance of step-ratio, the result was compared with reconstructions using a wide

range of manually selected penalty coefficients.
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Three oversampling ratio values 1.75, 1.5, 1.25 were used along all x, y and z

dimensions for the two spiral patterns. For radial pattern, 1.125 and 1.0625 were also

evaluated. Interpolation kernel is still Kaiser-Bessel. The β value was chosen from

reference [26] for the corresponding oversampling ratios.

Interpolation coefficient matrix compression ratio from 0.1 to 0.7 were evalu-

ated, which means removing 10% to 70% of samll coefficients.

Starting point of the iterations was chosen as zero-image [74]. Stop criteria

was a pre-defined number of iterations [75]. For this simulation, a number 40 was

used. This is manually verified to yield a reconstruction with no obvious alias or

artifact.

A four channel coil and an eight channel coil were simulated. Reduction factor

was 2 for the 4-coil configuration, and 4, 6 and 8 for the 8-coil. Coil sensitivity profile

was re-calculated using the interpolation-extrapolation method to simulate the real

MR data reconstruction case.

In the implementation of calculating edge-preserving penalty, the step-ratio

was applied from the 10th iteration with a starting coefficient 0.01 till the 40th iter-

ation. For object support coefficient calculation, it was applied at the 3rd iteration.

The step-ratio threshold value was set to 1 in all three sampling trajectory simula-

tions.
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(a) SS Shepp-Logan phantom

 5 10 15 20 25 30 35 40

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

iteration number

R
M

S
E

 

 

      0
  0.26
    0.7
      1
      5

(b) SS cylinder phantom
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(c) SSv Shepp-Logan phantom
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(d) SSv cylinder phantom

 5 10 15 20 25 30 35 40
0.01

0.02

0.03

0.04

0.05

iteration number

R
M

S
E

 

 
        0
     25.7
   407.4
      500
     1000
     2000

(e) RAD Shepp-Logan phantom

 5 10 15 20 25 30 35 40

0.05

0.1

iteration number

R
M

S
E

 

 

        0
    44.7
    631.0
     1500
     2000
     3000
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Figure 4.14: RMSE of gridding with and without edge penalty. The solid line with ‘+’

marker is the one calculated with step-ratio value 1. For radial trajectories, step-ratio

2 estimated coefficient is display as dashed line with ‘*’ shaped markers.
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4.3 Results

Figure 4.14 shows the RMSE value of the edge preserving penalty reconstruc-

tions. An image mask was applied in RMSE calculation to use only those voxels on

image, not in background. The image mask was manually calculate by thresholding

the phantom image followed by hole fillings. An example is shown in figure 4.15(a).

Each curve in the image corresponds to one regularization coefficient. Coefficient 0

denotes no regularization. Note that RMSE improves with the increase of coefficient

starting from 0. Then after a certain value, when the coefficient increases, RMSE

degrades, which can be even worse than the no regularization case. This is due to

over-smoothing. Note that for the SSv data (middle row), penalty coefficient value

5 on the Shepp-Logan phantom (left) yields good RMSE results compared with no

penalty, while on the cylinder phantom (right) the RMSE is much larger, denoting

over-smoothing. This demonstrates that penalty coefficients obtained from one data

or one simulation is not always suitable for other data. The calculated coefficient

yields good RMSE value for all the simulations. For radial trajectories, the RMSE

improvement from penalty coefficient using step-ratio threshold value 1 is not too

much. The RMSE curve is not converged yet at 40 iterations. The performance using

coefficient from step-ratio threshold value 2 is also shown in the figures. In this case

the RMSE improvement is much better, with close performance to the best manu-

ally selected coefficient. Note that for the un-penalized case (with coefficient 0), the

RMSE value slightly increases after certain iterations. For example, in figure 4.14(f),

minimum RMSE occurs at iteration 15. Iteration 20 and later have larger RMSEs.
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For the two stack of spiral cases, the neighbor points is set to 4 in x− y plane,

and 0 along z because slice distance along z dimension is much larger than the point

distance in x− y plane. For the radial sampling data, neighbor points are set to 4 for

x− y and 2 for z. Huber potential function was used to compute the penalty.

The effect of object support is evaluated using image RMSE and background

RMSE. The background mask is defined as the difference of FOV mask and the image

mask. An example is shown in figure 4.15(b).

(a) Image mask (b) Background mask

Figure 4.15: Image mask and background mask for evaluating object support penalty.

Pixels in the white area are used in RMSE calculation.

Figure 4.16 shows the RMSE value of the image part and background part

using object support penalty on 3D simulated image reconstructions. For the two

spiral patterns, RMSE was calculated at the 15th iterations. The number 15 was

chosen based on the fact that the reconstruction converges to a reasonable result for
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Figure 4.16: RMSE of image part and background part using object support. The

calculated coefficients for each case are: (a) 8.1. (b) 3.9. (c) 10.2. (d) 5.5. (e) 646.

(f) 447.
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the unpenalized case. RMSE began to increase after this iteration. For radial data,

RMSE was calculated at the 20th iteration. The image part RMSE was calculated

on all voxels inside of image mask, which is obtained by manually thresholding the

phantoms followed by hole filling operation. Background RMSE was calculated on all

voxels in background, which contained all voxels inside of FOV but outside of image

mask. Step-ratio threshold was set to 1.

The figure shows that without object support penalty (coefficient equals 0),

there are certain image and background RMSE values for each case. For the spiral

data, with the coefficient increases, the trend of background RMSE first is decreas-

ing, increasing, and then decreasing again. With very large coefficient (for example,

100000), the background RMSE drops to nearly 0, which denotes clean background

without noise. This is similar to the operation to set every voxel outside of object

mask to 0. Although it yields noise free background, the image has a sharp trunca-

tion around the object mask. The image part RMSE may also be higher than the

case without using object support penalty (figure 4.16(a) and 4.16(c)). For the radial

data, extremely large coefficient does not completely eliminate background noise. The

remaining RMSE is caused by the difference between the calculated object mask and

the manually segmented image mask. Note for the radial data, image part RMSE

are larger even with extremely large coefficient. Using the calculated coefficient from

the step-ratio method, the background RMSE is reduced with comparable or smaller

image part RMSE.

Figure 4.17 shows RMSE changes (percent) of different oversampling ratio
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(e) RAD Shepp-Logan phantom
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(f) RAD cylinder phantom

Figure 4.17: RMSE of different reconstruction grid size. Relative to RMSE from 2x

grid.
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relative to 2x grid at the iteration with minimal RMSE. The corresponding iteration

for each oversampling ratio is summarized in table 4.2. Manually calculated image

mask was also applied so that background noise does not affect RMSE values.

For the two stack of spiral trajectories, 1.75x grid size already yields RMSE

increase of 1% − 4% compared to 2x grid. For radial samples, however, smaller

grid size yields reduced RMSE at 1.5x. Even at 1.125x, the RMSE increase is leas

than 0.5%. Note that smaller oversampling ratio typically requires more iterations to

converge in the sense of minimal RMSE.

2x 1.75x 1.5x 1.25x 1.125x 1.0625x

SS Shepp-Logan phantom 15 15 20 35

SS cylinder phantom 10 10 15 25

SSv Shepp-Logan phantom 20 25 30 25

SSv cylinder phantom 10 10 10 15

RAD Shepp-Logan phantom 20 20 20 30 45 75

RAD cylinder phantom 20 20 20 30 45 60

Table 4.2: Iteration number for each oversampling ratio.

Figure 4.18 shows the RMSE change of different compressing ratio of interpo-

lation coefficient matrix on 3D simulated image reconstructions. The bars are relative

RMSE change relative to that from uncompressed coefficient matrix. The RMSE val-
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(c) SSv Shepp-Logan phantom
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(e) RAD Shepp-Logan phantom
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(f) RAD cylinder phantom

Figure 4.18: RMSE of different interpolation coefficient matrix compression. Relative

to RMSE without compression.
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ues were compared at 15 and 20 iterations for spiral and radial data, respectively.

Compressing the interpolation coefficient matrix does not affect the convergence of

iterations.

It is shown from the figures that the effect of compressing the coefficient is

also data dependent. For the two stack of spiral trajectories, compression of up to

50% causes RMSE to increase about 1−3%. For radial trajectories, compressing 50%

only increase RMSE by less than 1%. At 60% compression, the RMSE is increased

by 2− 5%.

An eight channel phased array coil was simulated to test the performance of

larger reduction factor cases. The 8 coils were evenly distributed around the object

parallel to z direction. Figure 4.19 shows the sensitivity profile in one x−y plane. The

sensitivity profile was recalculated using the extrapolation-interpolation method [13].

With eight coils, the reduction factor can be as large as 8 in theory [13]. This

section focuses on higher values of 4, 6 and 8. 3D modified Shepp-Logan phantom

with added noise was used. Simulations using two types of sampling patterns were

performed: stack of spiral and radial trajectory as in the previous section.

For stack of spiral trajectory, reduction factor of 8 is not practically applicable.

Strong aliasing artifacts remained in the reconstructed image. So only the results from

reduction of 4 are shown, which is archived by keeping 2 spiral rotations from each z

level. The reduction was done as follows: for the first z level, keep the first and fifth

spiral rotation; for the second level, keep the second and the sixth rotations, and so

on.
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Figure 4.19: Simulated sensitivity profile in x− y plane of of an eight channel phased

array coil. Each sub image represents one coil.

For radial trajectory, reduction factor of 4, 6 and 8 were simulated by keeping

one of every four, six and eight half radial lines.

Figure 4.20 illustrates the RMSE of reconstructions with different edge pre-

serving penalty coefficients. Similar to the 4 coil case, this penalty reduces RMSE.

The performance of coefficient calculated using the step-ratio method is close to the

best RMSE.

Figure 4.21 is the RMSE of image part and background part with different

object support penalty coefficients. Step-ratio threshold was set to 1. Penalties were

applied from the third iteration for the stack of spiral data and radial data with

reduction factor of 4 and 6. For radial data with reduction factor of 8, penalty was

applied from the 5th iteration to skip a large step change between iteration 4 and
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(b) radial trajectory R = 4
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(c) radial trajectory R = 6
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(d) radial trajectory R = 8

Figure 4.20: RMSE of reconstructions with and without edge penalty. The solid line

with ”‘+”’ marker is the result using smoothing penalty with calculated coefficient,

where step-ratio threshold is set to 1 for stack of spiral, and 2 for radial pattern.
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(b) radial trajectory R = 4
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(c) radial trajectory R = 6
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(d) radial trajectory R = 8

Figure 4.21: RMSE of image part and background part using object support. The

iterations and calculated coefficients for each case are: (a) iteration = 40, coefficient

= 0.49. (b) iteration = 30, coefficient = 339. (c) iteration = 50, coefficient = 234.

(d) iteration = 80, coefficient = 63.
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5. The number of iterations were chosen based on the rule of no visible alias in the

unpenalized reconstructions. The figure shows similar trend as in the 4 channel coil

case. For stack of spiral data, very large coefficient results in zero background noise

with comparable image RMSE. For the three radial data at different reduction factors,

large coefficient does not completely remove background noise. This is also caused by

the difference of calculate object mask and the manually segmented image mask. In

all cases, the coefficients calculated using the step-ratio method reduced background

RMSE with comparable image RMSE.

RMSE with different oversampling ratios are shown in figure 4.22. Similar to

the four coil case, stack of spiral data always have larger RMSE values at smaller

oversampling ratios. While in the radial data, using 1.125x oversampling ratio in-

creases less than 1% of RMSE comparing to the case of 2x. The number of iterations

at each oversampling ratio are summarized in table 4.3.

2x 1.75x 1.5x 1.25x 1.125x 1.0625x

stack of spiral R = 4 35 35 40 40

radial R = 4 30 35 35 40 75 80

radial R = 6 45 50 55 60 105 120

radial R = 8 65 65 70 80 120 120

Table 4.3: Iteration number for each oversampling ratio.
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(b) radial trajectory R = 4
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(c) radial trajectory R = 6
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(d) radial trajectory R = 8

Figure 4.22: RMSE of different oversampling ratio.
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(a) stack of spiral R = 4
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(b) radial trajectory R = 4
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(c) radial trajectory R = 6
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(d) radial trajectory R = 8

Figure 4.23: RMSE of different interpolation coefficient matrix compression.
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The results of compressing the interpolation coefficient matrix are shown in

figure 4.23. For all four cases, removing 50 percent of small coefficient only increase

RMSE by less than 1 percent.

4.4 Discussion

Edge preserving penalty helps to smooth the reconstruction with smaller im-

age RMSE relative to the phantom. Object support helps to reduce background noise.

The penalty coefficients calculated using the step-ratio method yield good reconstruc-

tion in the sense of RMSE for edge-preserving and object support penalty. The value

1 is suitable for the two stack of spiral trajectories. Value 1 and 2 are suitable for

radial trajectories. Larger step-ratio threshold tends to yield larger penalty coefficient

values.

Using smaller oversampling ratio and interpolation kernel parameters from

reference [26] in radial trajectory reduces RMSE. Considering 1.125x only increases

the RMSE values of the reconstruction by less than 1%, while using it on 3D data

can reduce the computation and memory requirement to less than 1/5 compared to

the 2x case. This factor is chosen for radial trajectories. For the two stack of spirals,

because smaller oversampling ratio increases RMSE, and the data size is not too big,

original 2x oversampling ratio will be used.

In the case of compressing the interpolation coefficient, with 50% compression

corresponds to RMSE increase of about 1%−2%. The interpolation coefficient mattrix

is ofen pre-computed and stored on disk to be used later for the same sampling
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trajectory and image grid size. So 50% compression is used for all sampling patterns.

The little RMSE increase could be compensated by the edge-perserving smoothing

penalty and object constraint penalty.
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CHAPTER 5

NON-CARTESIAN PARALLEL MRI RECONSTRUCTION METHOD

5.1 Method

5.1.1 Objective Function

Based on the analysis and computer simulations from the previous chapters,

the reconstruction of three-dimensional non-Cartesian parallel MRI problem is to

solve the following objective function

ψ(x) = ||b− Ex||2 + λ1
1

2

∑

j

∑

k∈C

wjkψhuber(xj − xk, δ) + λ2x(I − diag(S))x (5.1)

where E is encoding matrix defined in equation 3.12 with smaller values removed.

Huber function ψhuber is defined in table 4.1. δ is a Huber function parameter related

to noise level in image. S is the object mask. I denotes Identity matrix. λ1 and

λ2 are two penalty coefficients obtained using the step-ratio method introduced in

section 4.1.2.

5.1.2 Image Quality Evaluation

The image quality of the reconstructed image is an important factor to evaluate

reconstruction methods. The reconstruction from non-Cartesian samples introduces

aliasing artifacts, for both parallel and non-parallel imaging, a poor reconstruction

will have the alias, blurring or noisy regions remained in the final image. A direct

image quality comparison method is to display all reconstruction images side by

side to the human reviewer for visual comparison [13, 47, 55, 75–85]. The region of



www.manaraa.com

95

interest (ROI) on the images are often enlarged for better visualization. It is efficient

to identify the “bad” images among all reconstructions that contain large alias or

strong noise amplification. However, this is not a quantitative criterion. Different

inspectors may have different opinions among the reconstructions. This is also used

when determining the number of iterations to select the smallest iteration that has

no visible alias artifact.

Numerical comparisons are quantitative evaluation method. It can be sepa-

rated into two main groups depending on the data source: computer simulation and

in vivo data.

For computer simulations, the original numerical phantom image is available

and is used to calculate simulated k -space data. So it is used as the standard to

compare with the reconstructed images. RMSE calculated between the images is a

widely used criterion [51, 54, 55, 77, 80, 85–89].

For in vivo MR data reconstructions, however, there is no one method to be

accepted as the gold standard. Varies criteria are proposed and investigated in recent

literatures [13, 69, 74, 75, 83, 84, 89–93].

5.1.2.1 Aliased Energy

Jackson et al [15] calculated aliased energy in the image based on the recon-

struction method as an error term to denote image quality. Betty et al [26] adopted

similar method. In both cases quantitative equations are derived such that accurate

error terms can be obtained. This error term focuses on the impact of interpolation
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kernel. There is not such quantitative equations for parallel imaging yet, which needs

to take into account the impact of data noise and coil sensitivity maps.

5.1.2.2 RMSE

RMSE is also a widely used criterion in evaluating MR data reconstruction.

The definition is shown in equation 3.24. However, in MR reconstruction, the true

image is not available. An acceptable substitution is the body coil reference image [84,

93, 94]. Since this reference image also contains noise and other imperfections, the

RMSE may not show the true image errors.

5.1.2.3 Similarity Measurement

These metrics evaluate the quality of the reconstructed image in terms of

similarity with the reference image, for example, reference scan from body coil. Two

terms in this category are joint entropy (JE, less is better) and normalized mutual

information (NMI, more is better) [93]. The terms are calculated as follows:

Joint entropy

H(X, Y ) = −
∑

x,y

p(x, y) log2(p(x, y)) (5.2)

where X and Y are two images, p(x, y) is joint probability.

Mutual information

I(X ; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p1(x) p2(y)

)

(5.3)

where p1 and p2 are marginal probability.
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5.1.2.4 ROI SNR

The ROI SNR is calculated from manually selected ROIs from the recon-

structed image [89,90], which is useful to evaluate noise amplifications. Several (2-5)

small ROIs at relatively smooth regions in the image are manually defined. The mean

and standard deviation are used to represent signal and noise. Larger ROI SNR de-

notes better image quality in the sense of less noise amplification. The disadvantage

is that the value is dependent on the location of ROIs.

5.1.2.5 SNR from Two Scans

Another quantitative criterion for evaluating the reconstructed image quality

is to compute image SNR from two separate scans of the same object [69, 91, 92, 95].

The signal from the object are assumed to remain the same, while the random noise

content in the signal varies from scan to scan. Using the same reconstruction method

can obtain two separate images. The sum and difference of these two images are

then calculated, which are used to determine the “signal” and “noise” in the images.

Specifically, the signal of a local voxel is calculated by averaging the neighboring

voxels in the sum image. A 5 × 5 windows is used by Raj et al, which produces

acceptable results [69]. The standard deviation of noise is obtained using the voxels

in the difference image between the same local window. Then the SNR is defined as

SNR =
mean(Isum)
√

(2)std(Idiff)
(5.4)

where Isum and Idiff are the sum and difference of the two images over a local window.

This result is comparable across different reconstruction methods [69, 96].
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To obtain the two data set, Reeder et al acquired two independent scans. This

guarantees independent noise source. But may be erroneous because of object motion

or other physiological effects change [92]. Raj et al used only one single scan and then

manually added random noise in the k -space output to obtain the second data set.

This may achieve the same noise purpose as the two scans does, the result may be

affected by the intensity of the artificially added noise.

In this work a similar “two data” is used, where the two data come from one

full sampled data by manually separating into under-sampled subsets. Each subset

has the same noise statistics property, but different noise values. Object motion will

not affect the two subsets. The windows size is chosen to be 5 × 5 × 1 for the two

spiral data, and 5 × 5× 5 for radial data. The mean SNR in the same ROIs defined

in the ROI SNR method is used to represent the image SNR.

5.1.2.6 Summary

Based on the discussions above, visual inspection of the reconstruction is the

fist step to check visible artifact or other errors. Th metrics that are used in evalu-

ating the performance of the proposed method in later sections are: ROI SNR, two

data SNR, background noise, RMSE, NMI and JE. The last three terms are calcu-

lated relative to body coil reference images. FOV mask and image mask are used to

minimize the impact of background noise.
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5.2 Implementation

All 25 parallel MR data in this section were acquired on a GE 1.5T LX scanner

with a four channel phased array coil. A body coil reference data using the same

sampling trajectory is also acquired for coil sensitivity map calculation.

5.2.1 Stack of Spiral Trajectory

There are a total of 5 stack of spiral trajectory data. All of the data contain

8 stacks along z direction.

SS 1 data were acquired on a watermelon object with FOV 28cm along x

and y, 8cm along z, slice thickness 1cm and spacing 0. SS 2 were acquired on the

same watermelon. The difference is that the FOV along z changed to 2.667cm. Thus

slice thickness is also reduced to 0.333. SS 3 were on a cantaloupe object, with

FOV 28cm× 28cm× 8cm, slice thickness 0.5cm and spacing 0.5cm. SS 4 were on a

watermelon object. The x−y image is on the cross section. FOV is 28cm×28cm×4cm,

slice thickness is 0.5cm and spacing is 0. SS 5 were collected on a GE plastic cylinder

phantom. FOV is 20cm× 20cm× 6.4cm, Slice thickness 0.8cm and spacing 0.

The data are summarized in table 5.1.

5.2.2 Stack of Spiral Trajectory with

Variable Number of Rotations

This trajectory were used to obtain a total of 7 data set.

SSv 1 data were acquired on the ankle of a human volunteer. FOV is 20cm

along x and y, and 4cm along z. Slice thickness is 0.5cm and spacing is 0. SSv 2
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data object rotations FOV x-y FOV z thickness spacing

(cm) (cm) (cm) (cm)

SS 1 watermelon 8 28 8 1 0

SS 2 watermelon 8 28 2.667 0.333 0

SS 3 cantaloupe 8 28 8 0.5 0.5

SS 4 water melon 8 28 4 0.5 0

SS 5 GE phantom 8 20 6.4 0.8 0

Table 5.1: Stack of spiral data set

were again on the GE phantom, with FOV 20cm × 20cm × 4cm. Slice thickness is

0.5cm. Spacing is 0. SSv 3 and 4 were two scans with identical parameters collected

on a human volunteer knee. FOV is 20cm×20cm×4cm. Slice thickness is 0.5cm and

spacing is 0. SSv 5 are the average of SSv 4 and 5. The average has the advantage

of reducing noise, thus enhancing signal SNR and in turn enhancing reconstruction

image quality. SSv 6 were also acquired at the same time as SSv 4 and 5. It was an

independent scan with reduced number of spirals. The number of spiral rotations,

from bottom slice to top, are 1, 3, 5, 5, 5, 5, 3 and 1, respectively. This is achieved

by reducing 3 spiral rotations on each z level. The remaining rotations on each z

level are evenly space. The effective reduction factor is 1.85. This data contain

2 under-sampled scans with the same parameters. This is a true two data scan.

No further reduction is needed. SSv 7 were on a human volunteer brain. FOV is

24cm× 24cm× 4cm. Slice thickness is 0.5cm and spacing is 0.
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data object rotations FOV x-y FOV z thickness spacing

(cm) (cm) (cm) (cm)

SSv 1 ankle 4,6,8,8,8,8,6,4 20 4 0.5 0

SSv 2 GE phantom 4,6,8,8,8,8,6,4 20 4 0.5 0

SSv 3 knee 4,6,8,8,8,8,6,4 20 4 0.5 0

SSv 4 knee 4,6,8,8,8,8,6,4 20 4 0.5 0

SSv 5 ave of 4 and 5 4,6,8,8,8,8,6,4 20 4 0.5 0

SSv 6 knee 1,3,5,5,5,5,3,1 20 4 0.5 0

SSv 7 brain 4,6,8,8,8,8,6,4 24 4 0.5 0

Table 5.2: Stack of spiral with variable number of rotations data set

The data are summarized in table 5.2.

5.2.3 Radial Trajectory

There are a total of 13 radial trajectory sampling data. The radial trajectory

contains a total of 13106 radial lines evenly spaced to cover the entire 3D k -space.

There are 128 valid points on each half radial line. The points have a spacing in

k -space of 2.083m−1, which corresponds to a field of view of 48 cm. The 128 points

on each half radial line corresponds to image size of 256 on each dimension. However,

the true images occupies smaller number of points. To ease the computation burden,

the image size is chosen to be 160 and 192.

Radial 1 was collected on the GE phantom object. Radial 2-6 were obtained
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from the same GE phantom object, which contains 4 independent phased array coil

scans. These scans were collected one by one without moving the object. The data

are arranged as follows: Radial 2: phased array coil scan 1. Radial 3: phased array

coil scan 2. Radial 4: phased array coil scan 3. Radial 5: phased array coil scan 4.

Radial 6: use average of phased array coil 1 to 4 as phased array scan. Radial 7-13

were collected on a watermelon object. This data acquisition contained 2 independent

body coil scans and 4 independent phased array coil scans. By averaging 2 and 4 of

the phased array data, smoother data can be obtained to evaluate the performance

of less noisy data. Radial 7: body coil reference scan 1 with phased array coil scan 1.

Radial 8: body coil reference scan 1 with phased array coil scan 2. Radial 9: body

coil reference scan 2 phased array coil scan 3. Radial 10: body coil reference scan 2

phased array coil scan 4. Radial 11: body coil reference scan 1 with odd numbered

radial lines of phased array coil scan 1 and 2. Radial 12: body coil reference scan

2 with odd numbered radial lines of phased array coil scan 3 and 4. radial 13: use

average of body coil reference scan 1 and 2 as body reference scan, and average of

phased array coil 1 to 4 as phased array scan.

The data are summarized in table 5.3.

5.2.4 MR Data Pre-processing

Because both the body coil and phased array coil reference data acquired

using non-Cartesian sampling trajectories, the reference images contain alias artifact

outside the FOV. Typically the FOV size is large enough so that the images show no
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data object comment

Radial 1 GE phantom

Radial 2 GE phantom array scan 1

Radial 3 GE phantom array scan 2

Radial 4 GE phantom array scan 3

Radial 5 GE phantom array scan 4

Radial 6 GE phantom average of array scan 1,2,3 and 4

Radial 7 water melon body scan 1, array scan 1

Radial 8 water melon body scan 1, array scan 2

Radial 9 water melon body scan 2, array scan 3

Radial 10 water melon body scan 2, array scan 4

Radial 11 water melon body scan 1, average of array scan 1 and 2

Radial 12 water melon body scan 2, average of array scan 3 and 4

Radial 13 water melon average of body scan 1 and 2,

average of array scan 1,2,3 and 4

Table 5.3: Radial trajectory data set
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visible alias. For some of the data, the object size is very close to that of FOV. In

other data the object is not in the center of FOV. Thus circular streak shaped alias

exists in the reconstructed reference images around the object, which makes it difficult

to calculate coil sensitivity map values because the alias will also be included in the

calculation. A preprocessing step on the reference images to manually eliminate the

alias is required. A cylinder shaped mask, i.e. stack of circles, is pre-calculated for

the two spiral data. A sphere shaped mask is pre-calculated for the radial data.

5.2.5 Under Sampled Data and

Reference Images

The data acquired from MR scanners contain trajectories of full FOV, full

resolutions scans (except data SSv 6). To achieve reduction factor of 2, each data set

is split into 2 uncorrelated subset which are essentially acquired with the same object

parameter but different noise values [85, 88].

For stack of spiral trajectories with 8 rotations on all z-level, the odd numbered

1,3,5,7 rotations of each level are assigned to subset 1, and even numbered 2,4,6,8

rotations are in subset 2. For stack of spiral trajectories with variable rotations of 4,

6 or 8, the corresponding odd numbered rotations, 1,3, 1,3,5 or 1,3,5,7 are assigned

to subset 1. The corresponding even numbered rotations are assigned to subset 2.

Both subsets have effective reduction factor of 2. One exception is SSv data 6, which

is under-sampled with reduction factor of 1.85. For radial sampling trajectory data

the radial lines are partitioned using a similar odd-even method. All the 4 array coil
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dataset are split into two subsets to evaluate the reconstruction method performance.

Each subset of data is reconstructed independently. The two subsets are used as the

”two scans” SNR comparison.

Full resolution body reference image is reconstructed and used in RMSE, NMI

and JE calculation.

5.2.6 Implementation Environment

Program in this section was implemented in Matlab version 7.7 (Mathworks,

Natick, MA). Code was executed on a SuSE Linux version 11.3 server with an eight

core Intel Xeon X5450 CPU at 3.00GHz. System memory is 16GB.

5.3 Results

The 25 data set mentioned in section 5.2 were reconstructed using the proposed

method. Corresponding image quality metrics were calculated. For the two spiral

data, the number of iterations for both conventional method and proposed method

were set to 40. For radial data, 40 iterations were used for conventional method, while

80 were used for the proposed method due to the impact of smaller oversampling ratio

as mentioned in the previous chapter.

Figure 5.1 shows reconstructed images from some of the MR data set, one

from each sampling patterns. Reconstructions from the proposed method has smaller

background noise due to object support penalty. Figure 5.1(b) and 5.1(c) also show

that reconstructions from the proposed method are smoother while still preserves

edges in image.
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(a) SS 5 (b) SSv 3 (c) Rad 3

Figure 5.1: Reconstructed images. Top row: conventional method. Bottom row:

proposed method with edge preserving penalty, object penalty, smaller oversampling

ratio for radial data and compressed interpolation cooefficient matrix.
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Figure 5.2 shows the RMSE of the proposed and conventional method. RMSE

was calculated between reconstructed image and body coil reference image. Each

data contains two subsets. A manually calculated image mask that only covers the

true object with holes in object filled were applied to avoid the impact on background

noise.

Since the body coil reference image is an approximation to the true image,

the RMSE values are for qualitative performance evaluation only. The figures show

that with edge preserving penalty, smaller oversampling ration and compressed in-

terpolation coefficients, the RMSE of the proposed method are comparable to the

conventional method.

Figure 5.3 and 5.4 are the NMI and JE metrics relative to body coil reference

image. The proposed method show comparable results as the conventional method.

Figure 5.5 illustrates the ROI SNR results. The values are SNR change of

the proposed method relative to conventional method. The two bars of each data

represents the two subsets. It is shown in the figure that ROI SNR is greatly improved

in the proposed method. This metric does not rely on reference image. But it is

dependent on the ROI locations. Examples of some of the ROI definitions are shown

in figure 5.6.

Figure 5.7 is the relative SNR derived using the two data mode. This SNR

term from the proposed method is also greatly improved on all data set. Same ROI

definitions as the ROI SNR case are used here to location SNR values.

Background noise from the proposed method and conventional method are
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(a) RMSE Subset 1
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(b) RMSE Subset 2

Figure 5.2: RMSE relative to body coil reference image. x axis is the sequence of all

MR data. The orders are SS, SSv and radial. y axis is the RMSE value.
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(a) NMI Subset 1
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(b) NMI Subset 2

Figure 5.3: Normalized mutual information relative to body coil reference image. x

axis is the sequence of all MR data.
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(a) JE Subset 1
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Figure 5.4: Joint entropy relative to body coil reference image. x axis is the sequence

of all MR data.
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Figure 5.5: ROI SNR. y axis is the percentage of ROI SNR change of proposed method

over conventional method. Positive values means higher SNR in those ROIs.
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(a) Data SS 5 signal and noise ROI (b) Data SSv 3 signal and noise ROI

(c) Data rad 3 signal ROI (d) Data rad 3 noise ROI

Figure 5.6: The white square in the images denote the ROI definition. It is a noise

ROI if it is in the empty region, or a signal ROI if it is in a high intensity region.
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Figure 5.7: Change of SNR calculated from two data. y axis is the percentage of

SNR change of proposed method over conventional method. Positive values denotes

higher SNR.
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shown in figure 5.8. Background is defined as those voxels inside of FOV mask

but outside of the manually calculate image mask. Noise mean is represented by

the bars. Noise standard deviation is represented by the error bar. Note that the

object support coefficient calculated using the step-ration method does not completely

set the background to 0 to reduce the impact on foreground image quality. The

figures show that the proposed method reduced background noise mean and standard

deviation in all data.

The interpolation coefficient is stored in sparse matrix format. The size de-

pends on the number of k-space samples and interpolation kernel window length. A

50% compression results in savings of half the size. The reconstruction computation

time is impacted by the image size, oversampling ratio, interpolation coefficients, and

penalty term evaluation. For the 3D radial data with 192 point on each dimension, for

example, the per iteration time in Matlab for conventionsl method using 2x grid and

no coefficient compression is about 106 seconds. Using oversampling ratio of 1.125

and 50% coefficient compression, the per iteration time reduces to about 33 seconds.

The Matlab code is not fully optimized. So the time here serves for referece purpose

only. But it clearly shows that in each iteration the computation is reduced. Note

that the proposed method requires more iterations and also extra steps for penalty

coefficient calculation.
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(c) Radial subset 1
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Figure 5.8: Background noise mean and standard deviation.
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5.4 Discussion

There is no widely accepted standard to evaluate reconstructed MRI images.

Each image quality metrics has its own advantages and disadvantages. RMSE, NMI

and JE all depends on the reference images. For the proposed method, image smooth-

ing and background noise suppression operation is applied to achieve user desired

effects. So the reconstruction is expected to be different from the image directly from

MR scanner, which contains image noise and background noise. ROI SNR and two

data SNR does not rely on reference images. But the values depends on the selection

of ROI blocks. Background noise analysis depends on the definition of FOV mask and

image mask. Using a combination of metrics to evaluate MRI data reconstruction is

thus better than any single term.

The results in this chapter illustrate that the proposed method generates better

quality reconstructions over conventional method in the sense of higher SNR and

lower background noise, at reduced computer resource requirement, while still have

comparable similarity measurement relative to the reference images.
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CHAPTER 6

CONCLUSION

An iterative method for three dimensional non-Cartesian parallel MRI recon-

struction was proposed in this work. The method was implemented based on SENSE

and gridding following the evaluation of different reconstruction method including

gridding, BURS and NUFFT. Solution was solved iteratively with edge preserving

penalty and object support penalty to enhance image quality. These two penalty

terms are compensate to each other. The former one smooths noise in image while

preserves strong edges. The latter one reduces background noise but has no constraint

on the foreground image. The combination of these two penalty terms improves the

overall image quality. In both penalty terms, the regularization coefficient was cal-

culated iteratively using a trust region based step-ratio method. Performance of the

reconstruction using the calculated coefficients were close to the best RMSE.

The complexity of three dimensional reconstruction increases with the image

size, number of samples and phased array coils. Larger data set require more com-

putation power and computer memory and storage. On the other hand, redundant

and less important information exist in the data. Using smaller gridding oversam-

pling ratio with corresponding interpolation kernel parameters helped to alleviate the

resource requirement. Compressing the pre-computed interpolation coefficient ma-

trix by eliminating smaller coefficient also helped reducing the memory and storage

requirement.

Each of the proposed method was validated using computer simulations. Two
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numerical phantom images with added noise were generated. Three type of 3D non-

Cartesian sampling patterns were used: stack of spiral (SS), stack of spiral with

variable rotation (SSv) and radial pattern. Four and eight channel phased array coil

configurations were simulated. Reduction factor values varied from 2 to 8. Compar-

ison of the reconstructed image with the noise free numeric phantom in the sense of

RMSE was performed. Results show that the edge preserving penalty enhances im-

age quality with reduced image RMSE. Object support penalty reduces background

noise without affecting foreground image quality. Using smaller oversampling ratio

and compressing interpolation coefficient matrix have different impact on different

sampling patterns. For smaller data such as the spiral sampling patterns (SS, SSV),

relatively larger RMSEs occurred. For larger data using radial patterns, the im-

pact on RMSE was very small. In some data the RMSE was even slightly reduced.

Oversampling ratio of 1.125 was chosen for radial data.

The proposed method was applied on 25 three dimensional MR data from a

GE MR scanner. A four channel phased array coil was used for data acquisition.

All three sampling patterns were used. A variety of object were imaged: plastic

phantom, fruit, and in vivo images from human volunteers. Edge preserving penalty,

object support penalty and interpolation coefficient compression were applied on all

data reconstruction. Smaller oversampling ratio was used for radial pattern data only.

Six image quality metrics were used to evaluate the performance of the pro-

posed method: RMSE, NMI, JE, ROI SNR, two data SNR, and background noise.

The first three metrics evaluate image quality relative to a reference image. A separate
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full resolution body coil scan with the same type of non-Cartesian sampling pattern

was used as the reference, which is an approximation to the true image. Manually

calculated image mask was used to focus only on the errors of the image, not the back-

ground. The two SNR metrics measure SNR from the reconstructed images without

references. ROIs were manually defined on each image data set and used to calculate

SNR. The higher the SNR, the better the image quality. Background noise met-

ric measures noise statistics from the background outside of the manually calculated

image mask. For the 25 MR data, reconstructions from the proposed method were

shown to have higher image SNR, less background noise, comparable similarity to

reference image, at reduced resource requirement. The penalty coefficients calculated

using the step-ratio method were validated for improved image quality.

The proposed method can be applied to other type of parallel MRI sampling

patterns on different number of phased array coils. The impact of smaller oversam-

pling ratio and interpolation coefficient matrix compression need to be re-evaluated for

each application. Edge preserving penalty and object support penalty were demon-

strated to enhance reconstruction quality on different applications with the calculated

penalty coefficients. The trust region based step-ratio method for penalty coefficient

calculation can be applied with other penalties.
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